EvoZilla

Longitudinal Evolution Analysis of Large Scale Software Systems

L |
N
"= s
.l . B 4
gy N i)
O - n" D' n
. N
. B ..D n = L -
= - u

Michael Fischer © 2006 robinson @evozilla.com

Dieses Dokument wurde mit ETEX erzeugt.

Die vorliegende Publikation ist urheberrechtlich geschiitzt. Alle Rechte vorbehalten. Kein Teil dieser Publikation darf ohne schriftliche Genehmigung
des Autors/der Autoren in irgendeiner Form durch Fotokopie, Mikrofilm oder andere Verfahren reproduziert oder in eine fiir Maschinen, insbesondere
Datenverarbeitungsanlagen, verwendbare Sprache iibertragen werden. Die in dieser Publikation erwihnten Software- und Hardwarebezeichnungen sind
in den meisten Fillen auch eingetragene Warenzeichen und unterliegen als solche den gesetzlichen Bestimmungen.

©2006 Michael Fischer Version vom December 23, 2006

Datei: HSD.tex

About this Thesis

Title EvoZilla - Longitudinal Evolution Analysis of Large Scale Software Systems

Dissertation | submitted to the

Faculty of Informatics Vienna University of Technology
in partial fulfillment of the requirements for the degree
Doctor of Technical Sciences

Advisors Univ.Prof. Dipl.-Ing. Dr. techn. Harald C. Gall
Software Engineering Group

Department of Informatics

University of Zurich
http://seal.ifi.unizh.ch/gall/

0.Univ.-Prof. Dipl.-Ing. Dr.techn. Mehdi Jazayeri
Distributed Systems Group

Vienna University of Technology
http://www.infosys.tuwien.ac.at/ Staff/mj/

Author Michael Fischer
Matriculation number: 8827768
http://www.infosys.tuwien.ac.at/ Staff/mf/

Zurich, December 2006

Abstract

Large and long-lived software systems represent important assets. With respect to their constantly changing
and evolving environment they must react flexible to incorporate user requirements. Design for change and
agile development are no panacea without appropriate feedback about the created instances of the solution
space. As a consequence, the check for anomalies in a system’s evolution must be an integral part of the
overall live-cycle process. Software evolution analysis offers an opportunity to establish a feedback loop for
the assessment of the structural stability of a software system. A methodology is required to systematically
identify critical entities in a system’s evolution with respect to their structural dependencies and to point
out their shortcomings. This information represents the feedback about and enables the validation of past
design decisions.

To solve the problem of information extraction and feedback generation we focus on the large amount
of historical data which are automatically recorded by the various supporting tools such as version control
or problem reporting systems. The primary research goals which arise are therefore: (G1) an efficient
storage model and support tools which enable the accommodation of the historical and structural changes
for fast and efficient analysis; (G2) a fast and efficient method to detect structural anomalies from release
history and problem report information; and (G3) a method for feedback generation about critical entities
and dependencies to improve the understanding about changes and their effects.

Central element of all analyses is a release history database which accommodates all data gathered
about a system. We propose EvoGraph, an approach for hot-spot and change pattern detection in the
evolution of large-scale software systems based on modification and problem reports, run-time data and
source code changes. For the efficient use of our EvoGraph approach, we first apply feature analysis to
obtain source file candidates for a detailed exploration. Based on the obtained file-set, a dependency graph
is generated from the historical and structural information in the database. Next, the graph is used to reveal
non-obvious structural dependencies, which is achieved via minimizing the distance between related nodes
and maximizing the distance between unrelated nodes. Finally, a subsequent source change analysis phase
provides detailed information about the system’s evolution with respect to structural changes.

Result of the approach are qualified subsets of the pre-selected source artifacts with their respective
structural dependencies, which can be conceived as the evolutionary echo of the as-implemented archi-
tecture. Structural changes are also quantifiable which facilitates their assessment on a fine-grained level
such as method or variable. Moreover, visualizations provide feedback to draw further conclusions about
identified change patterns and re-engineering intervals.

EvoGraph represents a flexible, lightweight, and sufficient approach to assess the structural stability of
large software systems. Our case study with the Mozilla Application Suite has shown its applicability and
effectiveness in pointing out the major artifacts and their structural shortcomings. Results also indicate that
long-lived software systems provide historical data in sufficient quality and quantity to efficiently identify
and point out structural and evolutionary anomalies. With respect to our case study we were able to identify
God-classes in the structural dimension and different anti-patterns in the evolutionary dimension which are
indicators for structural instabilities causing complex and costly source code changes.

Acknowledgment

The work described in this thesis was supported in part by
* the Austrian Ministry for Infrastructure, Innovation and Technology (BMVIT);
e the Austrian Industrial Research Promotion Fund (FFF);
« the European Commission in terms of the EUREKA 2023/ITEA projects CAFE and FAMILIES;
* the European Software Foundation under grant number 417; and

¢ the Swiss National Science Foundation (SNF) and the Hasler Foundation Switzerland.

Contents

1 Introduction
1.1 Motivation and problem description
1.2 Approach e
1.2.1 Software evolution analysis
1.2.2 Definitions
1.2.3 The EvoGraphapproach
1.3 Thesisstatement. e e e e
1.3.1 Hypotheses e
1.3.2 Research goalsrevisited
1.4 Relevance, benefits and expected results oL
141 Relevance e
142 Benefits oL
143 Results
1.5 Threatstovalidity e e
1.6 Résumé
1.7 Architecture of thisthesis L
1.8 Furtherreading e
2 Related Work
2.1 Building arelease history database oo
2.2 Release history mining L e e e e
2.3 Evolutionanalysis L
2.4 Product family evolution
2.5 Architecture reconstruction oL e e
2.6 Couplinganalysis
2.7 Visualization of couplings
2.8 Clustering of artifacts
2.9 Dynamic analysSiS e e e e e e e e
2.10 Parsing and source code analysis Lo
201 Résumé L e e e
3 Building a Release History Database
3.1 Information extraction from source code repositories
3.1.1 Information extraction from CVS
3.1.2 Repository evolution
3.1.3 Release date synchronization - defining a global time-scale
3.2 Problem Reports e e
32,1 BugZilla
3.2.2 Plausibility check of problem report IDs in modification reports
33 Features o vt e e e
3.3.1 Feature extraction
3.4 Grouping of related release history information

O O\ W W W NI =

11

13
15
18
19
20
20
22

23
23
23
24
24
25
25
25
26
26
27
27

CONTENTS

3.4.1 Hierarchical clustering 45
3.4.2 Introduction to multidimensional scaling 46
343 Energybasedlayout 47
3.4.4 Exploiting logical couplings 48
34.5 Experiment with feature fHttp 49
35 Résumé 51
EvoZilla - Analyzing Evolving Systems 53
4.1 EvoGraph e e e 53
4.1.1 Approach 53
4.1.2 AnalySiStypeso e e e e 58
4.1.3 Dataconnectivity i e e e e e e e e 61
42 EvoTrace e 62
421 Approach L 63
43 EvoFamily e e e 67
43.1 Approach 67
Case Studies 71
5.1 AboutMozilla. e 71
52 Modification reports L e e e 72
5.2.1 Evaluation of the Release History Database 72
5.3 Problemreports e e e e e e e 75
5.3.1 Distribution of problem reports Lo 75
5.3.2 Products and problem reports oL 76
5.3.3 Correlation with modification reports 76
5.34 Couplingdistribution 78
54 Feature analysis L 78
54.1 FPeature extractiono e e e e e 78
5.4.2 Visualizing feature evolution Lo 81
5.5 Structural analysis with EvoGraph o oo 88
5.5.1 File selection and co-change visualization 88
5.5.2 Heuristics for Fact Extraction 91
553 Findings 91
5.6 EvoTrace - observing evolution viaruntime data 100
5.6.1 Datacollection e 100
5.6.2 Post-processing and quantitativeresults 105
5.6.3 Visualization 106
5.64 Discussion e 107
5.7 EvoFamily - identifying commonalities in product families 108
5.7.1 Quantitative compariSont e e e 110
5.7.2 Changereporttextanalysis o 111
5.7.3 Reference distribution oL 111
5.74 Change impactanalysis. 112
5.7.5 Detailed change analysis oL oo 113
5.7.6 Discussion e e 114
5.8 Résumé 114
Conclusions and Future Work 117
6.1 ConClusions e e e 117
6.1.1 Accept/rejecthypotheses 118
6.1.2 Researchgoals 118

6.2 Future work e e e 119

CONTENTS iii

A Structure and Evolution 121
Al Approach e 121
A.l.1 Factextraction it it e e e e e 122

A.1.2 Dataintegration e 122

A.1.3 Viewabstraction e 123

Al4 Analysis e e 124

A.2 Investigating the coupling within Mozilla 124
A2.1 Module VIEW e e e e e 125

A22 Detailedmodule view Lo 125

A3 Résumé 125

B File Sets 129
C Release Dates 131
D Selected Publications 133
D.1 Papersandjournal papers e e e e 133
D.I.1 Releasehistory 133

D.1.2 Clustering o e e e 133

D.1.3 Evolutionand structure e e 133

D.1.4 Product families 133

D.1.5 DynamicanalySis e e e e e e 134

D.2 Technical teports e e 134

D.2.1 Release history 134

iv

CONTENTS

Chapter 1

Introduction

Changing requirements and technologies are the driving forces in the evolution of software systems.
This observation is reflected by Lehman’s first law about software evolution [95]—the law of Continu-
ing Change—which states that software has to evolve to maintain its usability. As a consequence, these
driving forces of software evolution can necessitate a complete redesign. Thus, software engineers are
interested in having a clear picture about the agility of their systems. Evolution data can be used as ba-
sis for a decision whether and when a redesign should be made. Without proper maintenance activities
software will age [110] (see also Figure 1.1) and will become less valuable for its users. Furthermore,
real world experience indicates, that the development process of long-lived commercial software and open
source software systems frequently exhibit a chaotic characteristics rather than a structured development
process with well-defined phases. Undesirable results of a “stochastic” system development processes are
sub-optimally structured systems with dependencies inducing ripple effects [145], requiring large source
code changes sometimes affecting hundreds of files located in different modules, or causing difficulties in
following their architecture blue-print in the course of their evolution.

Figure 1.1 Software maintenance Sisyphus: reverse engineering, forward engineering, software aging.

Requirements ew Requirements

re—engineering

re—architecting

Burisauibus premioy

reverse engineering

) e
re—structuring

W

2 CHAPTER 1. INTRODUCTION

1.1 Motivation and problem description

Following the observations of Gall et al. [62] these shortcomings of a system’s structure leave detectable
traces in the development history. They pointed out that simultaneous changes extracted from the version
history of software systems are strong indicators for logical dependencies between different sub-systems.
These systems contain a vast amount of information about the reasons for small or large changes to the
software, for which adequate data filtering mechanisms need to be applied to enable useful and meaning-
ful analyses. Hidden dependencies of structurally unrelated but over time logically-coupled files (i.e., files
which are frequently changed together although residing in separate modules or subsystems) further exhibit
potential to illustrate structural evolution and possible architectural shortcomings. In recent research, si-
multaneous source code changes were independently used by Zimmerman et al. [149] and Ying et al. [146]
with varying success to predict source code changes by mining co-change information. Especially the
approach by Zimmerman showed that a pure statistical model delivers only unsatisfying results.

Mining approaches for historical information are frequently restricted to draw colored diagrams about
various evolutionary and structural aspects such as identification of stable phases, distribution of problem
reports, visualization of code metrics and others [45, 64]. Still, many of the recent approaches only inad-
equately provide clues about structural shortcomings and stability of a software system. Collberg [38] for
instance proposed a visualization approach to trace a system’s evolution on the basis of (call-, inheritance-,
control-flow-, etc.) graphs with a temporal aspect. Shortcomings of a system are not indicated. Though
Wu’s approach [142] is designed to highlight conspicuous changes across a historical sequence of software
releases is does not consider structural information.

A large amount of research work has been pursued in the past years with respect to architecture recov-
ery [51], re-factoring and re-engineering [109, 41]. Pure structural detection approaches have shortcomings
in pointing out relevant entities of ill-structured systems or constructs which harm a system’s evolvability.
Reason is that these approaches have no effective notion about the relevance or importance of the relation-
ships between structural entities [86, 75, 120].

An exception is the work of Lanza who proposed the Polymetric Views [94] to combine structural
and evolutionary metrics in the analyses. Usually, the interpretation of the various extracted source code
metrics falls into the responsibility of an experienced system engineer. Source code metrics such as fan-in
and fan-out, number of public methods and variables provide some bases for the building of candidate-sets
of relevant entities and to measure a systems evolution [128].

Drawback of these approaches is that also entities are considered which are not well-designed but
never modified. Thus a predictor would be advantageous providing information about relevant entities and
to rank the entities for re-structuring activities. Seldom or never changed entities of lesser pertinence can
be neglected or at least their re-structuring can be postponed.

Another resource which has been exploited by researchers with respect to evolutionary changes are
code clones in a system. A few approaches have been proposed to track for instance changes within a
class. Van Rysselberghe et al. [137] use clone detection technology to track clones between different
versions to identify moved code or other anomalies in the source code. Other research approaches identify
splitting and merging of classes due to re-structuring activities [18] or aim at providing a comprehensive
picture about variations in code clones during system-evolution [89]. Though there have been interesting
results with respect to particular clones or classes, an exploration [104] concerning the software system
used in our case study did not indicate much potential for information which could be exploited to point
out structural shortcomings.

Therefore, an approach is required for the extraction and evaluation of evolutionary and structural
information to obtain a holistic view which can improve the understanding of a system’s evolution and
as a consequence bridge the gap between evolutionary and structural analyses. This has been realized
for instance in the ArchView approach proposed by Pinzger [111]. Both aspects are considered to derive
quality metrics on a high abstraction-level about the implementation of a software system. This is achieved
via abstraction from the detailed to the higher levels via algebraic manipulations [79]. An analysis of
architectural stability [132] has not been pursued. Since he also followed the “traditional” approach for
fact extraction from the source code via regular parsers, an in depth analysis of evolutionary changes is not
possible. Due to the high effort for parsing the huge amount of source code information, only a subset of
the source files can be examined. The monitoring of ongoing projects seems to be difficult as well, since

1.2. APPROACH 3

always complete sets of the source code have to be evaluated.

1.2 Approach

EvoGraph is our proposal for the assessment of structural dependencies based on the evaluation of historical
information. We aim at providing feedback about and enabling the validation of past design decisions. An
institutionalization of our approach for the continuous monitoring of ongoing projects provides a just-
in-time delivery of analyses results for the reasoning about structural entities. To support the reasoning
process, a model of the software system is created where elements of the source code are related to elements
of the evolution process. So architectural and evolutionary information can be provided for analyses on
different abstraction levels.

This requires the integration of architecture and evolution into a single unified information space. Thus,
a comprehensive database for evolution analysis on structural level needs to be populated with data from
the information spaces release history, source code configuration, problem reporting and conceptual data as
well. EvoGraph’s outcome are pointers onto structural entities together with their evolutionary patterns and
their shortcomings. These entities should be considered as first class candidates for re-structuring or re-
engineering activities to enable the incorporation of present and accommodation future user requirements.

Next, we provide a brief introduction to the topic of software evolution analysis, give definitions to
facilitate the discussion, and describe our process model, the major challenges and the risks of our method-

ology.

1.2.1 Software evolution analysis

Retrospective software evolution analysis is concerned with the analysis of historical data of software
projects and systems. Large amounts of this data are collected during the lifetime of software projects
and stored in version control systems and bug tracking systems. Since this information describes various
aspects of the evolutionary changes of software systems, they are a valuable source for a retrospective
analysis. The results constitute views that characterize the evolution of a system and reveal critical points
(hot-spots) in its design. Consequently, we define software evolution analysis (SEA) as the investigation of
a software system’s evolution to identify potential shortcomings in its architecture or logical structure.
Tahvildari et. al [128] proposed to divide software evolution analysis into the following three categories:
(a) interface evolution which relates to source code changes that affect the interfaces between functions,
modules, or subsystems; (b) implementation evolution which relates to source code changes that affect the
control flow and data flow properties of a given code fragment; and (c) structural evolution which relates
to changes that affect the structure of the system but do not not necessarily affect its functionality, control
flow, or data flow properties. Due to the information available, in this thesis we will restrict ourselves onto
the third type of evolution.

The result of successful maintenance activities is the system’s evolution. It establishes a strong relation
between software evolution analysis and software maintenance activities. In [12] a standard for an iterative
process for managing and executing software maintenance activities is described. Besides the definition of
an appropriate vocabulary, this standard prescribes requirements for process, control, and management of
the planning, execution, and documentation of software maintenance activities. Based on the vocabulary
a closer integration of the maintenance activities with the respective repositories for instance to document
the type of change such as corrective, enhancement, or perfective, would be beneficial for the software
evolution analysis process.

1.2.2 Definitions
1.2.2.1 Longitudinal observations

In [7], longitudinal is defined as involving the repeated observation or examination of a set of subjects over
time with respect to one or more study variables. Following the above definition, longitudinal does not
imply that something has to change. This is in contrast to evolutionary which declares a process to be a

4 CHAPTER 1. INTRODUCTION

working out or developing process. As not all changes to a software system are of developing nature, we
will use longitudinal in conjunction to activities, behavior, or views related with analyses of the system
under inspection

Definition: We define longitudinal as the timely or historical perspective an activity, a behavior or a
view provides.

1.2.2.2 Evolutionary hot-spot

Definition: We define an evolutionary hot-spot as a structural entity or the relationship between two
or possibly more entities with extraordinary characteristics in terms of the applied metrics capturing the
longitudinal aspect and the average for this metrics computed for the system or part of it.

Using a relative reference in the above definition has the advantage that variations between different
systems or even within different modules of a single system do not bias the results. With respect to our
approach which exploits the logical coupling between two entities, the identified hot-spots are those file-
pairs which have been frequently modified together during the observation period. Other metrics which
reflect evolutionary aspects of a single, isolated entity are for instance source code growing rate, source
code change rate, change rate of fan-in and fan-out, etc. Such metrics are exploited in Lanza’s Polymetric
Views [94] to characterize class evolution. Though this approach is well-suited to identify files with prob-
lematic characteristics in their evolution, it does not provide a thorough insight into the evolvability of a
set of files with possible mutual dependencies distributed over different modules.

Nevertheless, both types of hot-spots are frequently first class candidates for re-structuring or re-
engineering activities. Metrics to identify single files are straightforward and implemented in a variety
of flavors, e.g., lines of code, publicly accessible variables, cohesion, etc. The identification of file-pairs
with evolutionary critical behavior is more difficult since the computational effort easily can reach O(n?).
With tools such as Grok [78] based on Tarski’s binary relational algebra [129] graphs can be manipulated in
such a way that the search process can focus on the harmful entities. As this does not promise much advan-
tage over our approach using a heuristics-based search we rely on our “conventional” strategy to identify
the relevant entities. Besides the pure list of identified hot-spots we are also interested in investigating their
grade of mutual dependencies as a network of nodes. In large long-lived systems these dependencies are
frequently very complex and optimal clusterings are therefore difficult to find. Consequently, we apply
visual graph layout algorithms to generate an appropriate feedback about the dependencies between the
identified hot-spots.

1.2.2.3 Feature

The term feature has been used in the telecommunication domain for some decades before the software
engineering community discovered the term for their purposes. A brief discussion about the definition of a
software feature and feature interaction can be found in [116].

Definition: In accordance with the general definition of feature [7], a software feature is defined as a
prominent or distinctive aspect, quality, or characteristic of a software system or systems [85].

The properties aspect and quality are very vague with respect to software systems. Besides the diffi-
culties to measure and locate non functional aspects of a software system such as response time, reliability
or maintainability, a software system is primarily designed to realize a number of functional requirements.
These functional requirements—implemented as the behavioral aspects of the source code—are derived
from the features requested by the users of the software system. Furthermore, our software evolution anal-
ysis approach is applied on source files and therefore we need a mapping of user features onto source code.
Thus, we emphasize the behavioral property and adhere to the following more practical definition.

1.2.2.4 Software feature

Definition: A software feature is an observable and relatively closed behavior or characteristic of a
software part [116].

The problem which has to be solved in reverse engineering is to find a mapping of the relatively closed
behavior onto source code. Since the implementations for different features may overlap a non-ambiguous

1.2. APPROACH 5

solution is not always possible. A technique which is known as software reconnaissance [140] gleans the
required information via dynamic analysis from the executable software system.

The advantage of using features for analyzing software systems is that they are natural units in the
communication between user and developer. Examples for features from the Internet browser domain
are secure communication, the browser history or support for MathML. Furthermore, feature composition
is used to build new features out of a set of other features. For instance the browser history feature is
composed of forward and back buttons, a small database, a front end to modify the database, etc. A further
advantage when considering a software system as composition of features is that, the relationship between
features in terms of their evolutionary properties can be investigated.

The use of features in software evolution analysis can be further motivated by maintenance activities
which become simpler when defect reports concerning a certain feature can be assign to designated source
code files. Source code changes concerning interwoven features with unclear code boundaries may show
unexpected side effects, e.g., in slowing down the system. Aspects [88] can be used to modularize features
that otherwise would be scattered and tangled up with several components. Therefore, the use of aspects
may minimize dependencies among components and between features as well. Also in product family
engineering the notion of feature and clear code boundaries have advantages in composition new products
and building a product family platforms. The features and their interaction in respect to the longitudinal
perspective are subject to mining activities in software evolution analysis.

1.2.2.5 Interwoven software feature

Definition: We define interwoven software features as a set of distinct software features which share a
number of structural or logical dependencies.

As outlined above, software features are not only valuable in the user-developer communication but
also facilitate the understanding of the evolution process. Usually a feature is not located in single files
rather they span across several source modules and also cross-cut several abstraction layers of a system’s
architecture. This intrinsic interwovenness of features, i.e., the degree of structural and change dependen-
cies between a set of features, is a threat to the maintainability of a software system through unexpected
side effects.

The relationship between different software features can be expressed, for example, as the proximity
between them, based on the number of modification and problem reports that their implementing files have
in common. Visualization of such interwoven features must emphasize the proximity between features so
that hot-spots can be captured easily. These hot-spots indicate locations of design erosion, or even evolution
on the architectural level. Reasoning about hot-spots requires support through traceability and zooming in
on evolution and source model level. Otherwise, any conclusions about the cause of a hot-spot might be
incorrect and lead to false decisions.

1.2.2.6 Change transaction

Definition: A source code change-transaction is a timely coherent sequence of check-ins of several, not
necessarily logically-related files into the source code repository.

Notable for CVS [35, 73] there exist two sources to reconstruct these change transactions: (1) when log-
ging is enabled then the time-stamp of the commit—which is the same for all files of a change transaction—
can be used; (2) another option are the time-stamps when files are checked check-in into the repository
which is recorded individually for each file. Though the first source would provide more accurate data—its
availability depends on the configuration of the repository—we have to use the latter one in our case study
to reconstruct the information.

1.2.2.7 Co-change

Definition: The term co-change refers to files that participate in the same change-transaction [19, 27].
Particularly file-pairs which are frequently co-changed are considered to have logical coupling (see next
section). Naturally, the are of special interest for a further investigation via software evolution analysis.

6 CHAPTER 1. INTRODUCTION

1.2.2.8 Logical coupling

Definition: We refer to logical coupling as two files or source code entities are logically-coupled if a modi-
fication to the implementation affected both source code entities over a significant number of releases [62].

The logical coupling is determined from co-changes when considering the historical dimension of
change transactions, whereas the strength of logical coupling between a selected pair of files is deter-
mined by the number of co-changes which occurred during a given observation period. The stronger the
logical-coupling the higher should be the number structural dependencies. But, other causes such as code
clones [34] are possible as well. Logical coupling itself makes no assumptions about the location of the
files. We therefore introduce stickiness and adhesion to distinguish logical coupling of files which reside
in different modules and logical coupling of files which reside in the same module.

1.2.2.9 Stickiness and adhesion

Definition: We define stickiness as the number of cross-cutting change-transactions between any two file-
pairs connecting two different structural units.

Definition: We define adhesion as the number of change-transactions between any two entities within a
single structural unit.

The definitions are required since for the determination of the logical coupling the location of the
respective file-pairs is irrelevant. In the software engineering community, coupling and cohesion as coined
by Yourdon [147] describe the relationship of structural entities (functions, variables, etc.) between and
within higher structural units such as files, modules, etc. Furthermore, module-coupling and module-
cohesion are already used to describe the architectural relationship between and within modules.

To avoid confusion with these terms, we use stickiness for cross-cutting change transactions (see also
Figure 1.2) and adhesion for logical coupling of files within a module. Analogous to coupling and cohe-
sion the stickiness should be low and adhesion should be high. This can be argued by the property that
files within a module have more structural dependencies—presumed the system engineer follows common
practice. To point out such possible design-shortcomings, our approach relies primarily on the stickiness

property.

1.2.3 The EvoGraph approach

In this thesis we describe an efficient approach called EvoGraph to extract evolutionary and structurally
relevant entities from modification reports—including source code analysis—to obtain a holistic view about
the longitudinal development of a software system. Next, we provide a brief outline of our approach.

1.2.3.1 Data sources

Besides source code, design information and other development related information, large software sys-
tems contain huge amounts of historical data. This information needs to be filtered, assessed, condensed,
possibly shifted to higher abstraction-levels, to gain the essence of a system’s history. An important set
of the historical data are modification reports which are recorded in source code repositories such as Con-
current Versions System [35, 73], Subversion [15], BitKeeper [11], or Rational ClearCase [5]. Though the
systems are different, they basically record code deltas and their respective revision information. Usually
several files have to be modified to add new functions or to fix a particular problem.

Another set of historical data are problem or bug reports. Source files modified due to problem reports
can be related via the problem reports they have in common. This introduces a new quality aspect since
problem reports are frequently related to certain features and users mainly think more in terms of features
rather than software units. Problem reports are tracked via problem tracking systems such as BugZilla [13]
or GNATS [9] published as open source software, or as commercial systems such as DevTrack [131] or
JIRA [20],. Most open systems lack the integration of the problem tracking system into the version control
system. Thus the link between these two repositories has to be established by other means.

1.2. APPROACH 7

Figure 1.2 Schematic representation of a cross-cutting change transaction involving two files from different
modules.

Root Node

of (Sub-) System

Module Module

rq'ss—Cuﬁing
-Change.
. ‘Transaction

File A - - File B

1.2.3.2 Mining cross-cutting change transactions

These dependencies are subject for mining activities to provide starting points for further monitoring or
appropriate re-engineering activities. Figure 1.2 schematically depicts a source code change comprising
two files which propagates out of the well-defined module boundaries. The reasons for such change depen-
dencies lie in yesterdays design decisions and implementations [69]. It is therefore useful to understand
how such dependencies came into existence and how they evolved.

In current release history based mining approaches [27, 146, 148] only simultaneous changes of files
are considered which has two major drawbacks: a large number of changes is not considered at all and
local bias the results. Interesting results form our case study indicate

* that change transactions comprising a single file account for 42% of the source code changes in our
case study;

* that more than 50% of the change transactions affect files which are located in the same directory;
and

« that for the class of three files this property is valid for about 36% of the change transactions.

From another perspective, file-pairs that change frequently are most often located in the same directory.
For example .cpp and the corresponding header files ./ are often simultaneously modified. With respect to
our case study, it is not a surprising result that file-pairs located in the same module have a three to four
times higher change frequency than file-pairs which are located in different modules. Another observation
is the number of files which are part of the same simultaneous change: it tends to be smaller for files which
are placed closely within the module structure of the software system.

Though changes crossing module boundaries happen less frequently, they expose the system to large
and complex modifications. For the purpose of validating major structural properties, we need to identify
simultaneously changed file pairs on a global level. Since their frequency is lower than local changes, a
simple ranking is not sufficient and the detection process therefore requires a higher computational effort.

1.2.3.3 Processing model

Additionally to historical information we use runtime data, source code information, conceptual and ab-
stract information to enrich our model. This enables filtering of structural entities or reasoning about the
causes of source code changes. Central element in all information processing stages is a relational database,
depicted in Figure 1.3 as RHDB, which contains the data imported from the various sources, the intermedi-
ary results and the final data sets. Before evaluation can take place the gathered raw data has to be filtered,
ambiguities have to be resolved, missing information has to be reconstructed, and implicit information has
to be made explicit. This yields to an assured fact base which serves as input to the subsequent processing
steps.

8 CHAPTER 1. INTRODUCTION

Figure 1.3 Scheme for processing information obtained from structural and historical sources.

Executeable

1

Runtime Data Abstraction

Source Code

Sourcemodel

Analysis

Filter

' 4

Filter Visualization

J

Then, from the fact base the logical coupling between all artifacts are computed. The result is a cyclic,
undirected, weighted graph of dependencies, whereas the weight of an edge indicates the degree of depen-
dency. The higher the edge weight, the closer is their structural relationship.

Next, the selection of an appropriate set of artifacts narrows the search space for a further detailed eval-
uation to the architecturally relevant entities. In most cases artifacts representing the reference architecture
will be chosen. Where this information is not available an approximation has to be made. The results from
feature analysis are well-suited for this approximation, since it links the abstract concept of features with
concrete entities such as files. The approximation is made by selecting a set of features which cover the
major building blocks with respect to feature decomposition of the software system.

Based on the selected set of features or set of artifacts, a dependency graph is generated representing
the structural map of entities. The goal of the following layout phase is to minimize the distance between
related nodes and maximize the distance between unrelated nodes. A subsequent source change analysis
phase models the longitudinal evolution. We use lightweight parsers for the various artifact types to identify
those source code entities which are the cause for structural dependencies.

1.2.3.4 The EvoZilla framework

The EvoZilla framework is the vehicle to perform our evolutionary analyses and consists of about 135 Java
files which represent more than 50,000 lines of source code. Additionally some Perl and Shell scripts are
used to extract and import data from the different information sources such as version history or runtime
data. Figure 1.4 depicts an architectural sketch of the framework. The analysis approaches such as Evo-
Trace, EvoGraph, and EvoFamily build the “application layer” and use resources of the framework which
consists of:

e classes for commonly used data data-objects such as a global project time-scale, change sequences
for the assessment of individual entities, project structure for distance measurements, cluster infor-
mation, etc.

e persistency management classes: since we did not use a third party component such as Hibernate [2]
for a persistence layer, we use some simple Java classes for the management of the content in the DB
tables;

e analysis and visualization tools: a number of tools are available which are used for instance in the
preparation phase of the Release History Database such as for the reconstruction of a time-scale or

1.3. THESIS STATEMENT 9

Figure 1.4 An architectural sketch of the EvoZilla framework.

- -------=-=-"=-=-=-7 |
EvoGraph EvoFamily EvoTrace : :
| o — — .
EvoZilla
© Mozilla ~— BSD @
"o [s
RHypDB

the co-change transactions. Other classes provide functionality for the representation of graphs and
distance matrices or for drawing evolution diagrams; and

e launch pad: the analyses and report applications of the plug-ins are started via appropriate mech-
anisms provided by the framework. It provides database connectivity and generalized parameter
handling.

The bottom layer is made up of a relational database system in our case MySQL [4] which hosts dif-
ferent Release History Databases about the systems which are investigated. Next to the Mozilla Release
History Database the database with architectural information ArchDB is depicted which indicates the rela-
tion to the architectural reconstruction process ArchView [111].

1.3 Thesis statement

In this section we formulate the hypotheses for our research goals. Furthermore, we refine and discuss
these goals based on the terminology introduced earlier in this section.

1.3.1 Hypotheses

Since the hypotheses build a chain of causality we provide also a “flow-chart” to depict their relationship
and the impact on the overall acceptance and rejection. For the fulfillment of our research goals G/, G2,
and G3 we rely on the acceptance of the following hypotheses.

1.3.1.1 Correlation hypothesis

Hypothesis Hla: Logical coupling points out structural dependencies between source code entities.

Based on results from earlier studies [62, 63] we suppose that logical coupling between different files
may point out structural dependencies as well. From different research studies [148, 146] and our own
empirical studies [112, 114, 118] we can conclude that a strong relationship between logical coupling and
structure in many software system exists. In our investigation about the correlation between historical in-
formation and a software system’s structure we were able to identify a number of causes for the occurrence
of logical couplings:

e structural relationship: a direct structural relationship such as class inheritance, variable access, or

method invocation cause frequent modifications of both participants. In our case study this is the
most frequent cause for logical coupling;

» semantic relationship: unstructured data objects contain information which is processed by entities.
Changes in the structure or semantic of the information requires to adapt the producer and the con-
sumer;

e duplicated source code (code clones): structural and/or semantic code clones [104];

10 CHAPTER 1. INTRODUCTION

» administrative issues: source files are modified without changing the functionality of the code. A
copyright license change is an example for such a modification;

* inconsistencies in the repository: duplicated records of entities in the repository due to manipulations
indicate strong dependencies which do not exist.

We will prove this hypothesis with respect to the Mozilla Application Suite via empirical information
extracted from our case study. On the basis of a structural study we will show for selected parts of the
system the strong correlation between different types of structural relationships and logical coupling.

1.3.1.2 Traceability hypothesis

Hypothesis HIb: In the course of the evolution of a software system, structurally relevant entities leave
traceable footprints in the system’s history.

We assume that the decomposition of the system or the implementation of design patterns have some
possible shortcomings, which are reflected in the logical coupling of particular file-pairs. This hypothesis is
based on Hla and addresses the problem that entities in an ill-structured system have a higher likelihood to
be modified as part of a co-change transaction than entities in well-structured systems. As a consequence,
the logical coupling between certain entities will be higher. An example for such a shortcoming is a central
event-handler routine. Without proper application of a design pattern, each new function has to be “hacked”
into the event handler routine leaving traceable footprints. The application of the observer pattern (also
known as publish/subscribe) could decouple the implementation parts and consequently reduce the required
co-changes significantly. As already outlined, two types of logical coupling can be distinguished:

* (expected) logical coupling which occurs frequently within a module for instance between a *.cpp-
file and the corresponding *.h-file; and

* (unexpected or harmful) logical coupling between entities located in different architectural units such
as sub-systems or modules.

Since the latter one defines the hot-spots we are looking for, the metrics to apply and reveal these couplings
depends on the structural properties of the system. Additionally, we use conceptual information such as
module information or feature information.

If we cannot find evidence in our case study to support this hypothesis HIb, i.e., no relevant logical
couplings can be found, the consequence under the precondition of the acceptance of Hla will be the
rejection of HIb and the conclusion would be that the system is well-designed. As the result depends on
the filtering strategy for the harmful logical couplings, the filtering strategy has to be selected carefully.

1.3.1.3 Stickiness filter hypothesis

Hypothesis H2: Clustering of system graphs based on filtered logical coupling information reveals struc-
tural relationships.

As outlined in the previous sections, stickiness is much smaller than adhesion. Thus, considering a
“brut-force” approach for clustering of files [27] based on all logical couplings regardless of their type,
will build groups of files stemming from the same module. This is not a surprising result since it basically
reflects what is known a-priori. Though the more interesting entities with a high stickiness are placed in
close neighborhood they are difficult to identify since the are frequently obfuscated by a number of less
interesting entities. By interesting we mean an entity which acts for instance as a “peer-node” to other
modules or have a high number of variable accesses from outside of the module. To suppress the impact
of uninteresting logical couplings, the desired information must be selected first via an appropriate filter
criterion such as structural properties or abstract concepts such as features.

1.3.1.4 Source diff hypothesis

Hypothesis H3: Source code analysis based on source code deltas obtained from version control systems
provides sufficient evidence to characterize the structural dependencies with respect to their longitudinal
development.

1.3. THESIS STATEMENT 11

Information about source code changes are offered in two different flavors: (a) the full source code for
every revision (or release); (b) the difference between two revisions (or releases). An approach to analyze
the changes of several hundred revisions of a source file with a full-fledged parser is a computational
expensive task and therefore unreasonable for a large software system. Since only small portions of the
source code are changed frequently, most of the parsing work would be redundant. We therefore propose to
use the source code changes available from the version control systems, which allow a fine-grained analysis
of the changed portions. Then, structural dependencies can be extracted via a lightweight fact extraction
approach. A possible risk arises from the missing structural context under which the source code is parsed
and the difficulties to support namespaces.

1.3.1.5 Logical relation of formulated hypotheses

We presume that we are able to instantiate a specific process when the corresponding hypothesis is ac-
cepted. Consequently, the following flow-chart depicted in Figure 1.5 is the result of the logical relation of
the hypotheses formulated earlier.

Hypothesis Hla builds the foundation and is therefore our starting point. Rejecting Hla implies that
there is no correlation between logical coupling and structural information or just by chance. As a conse-
quence, logical coupling could not be used as predictor. In the next logical step we validate H1b. Possible
threats to its acceptance are a perfectly designed system in our case study, not enough information available
from the system’s history, or inappropriate filtering mechanisms. Rejecting Hla vV HIb implies that a de-
tection approach based on historical information would not be an appropriate means to identify structural
shortcomings.

Following, we evaluate H2 against the combined evolutionary and structural information. The branch
block in the diagram is therefore colored pink (C—3J) and blue (0) to indicate the transition from the evo-
lutionary aspect to the structural one. Rejecting H2 means that we are not able to interpret the relationships
between identified entities via clustering. Reasons for rejecting this hypothesis could be that the system is
completely unstructured, the filtering mechanisms are not appropriate, or not sufficient historical informa-
tion is available. The consequence for the EvoGraph approach is that no qualified, automatically extracted
set of input data is available for the generation of structural feedback. In this case the information has to
be provided manually.

H3 is independent of H2. But in our EvoGraph approach the data are further processed on the earlier
results obtained and therefore this step relies on H2. Possible reasons for rejecting H3 are the insufficient
information which can be extracted from the source code deltas such as naming ambiguities or difficulties
in correlating the results from the different programming languages.

The overall result in case of accepting Hla N HIb N H2 N\ H3 will be therefore a success of our
approach. As the approach may produce useful results if H2 VV H3 have to be rejected, we claim a weak-
success. In case of rejecting H2 A H3 the approach produces no useful results.

1.3.2 Research goals revisited

The research questions sketch the way how the overall objective of this thesis shall be fulfilled. We now
refine and discuss the aspects of our research goals formulated earlier.

1.3.2.1 Storage and computational model

Goal G1: An efficient storage and a computational model which is able to accommodate the historical and
structural changes for fast and efficient analysis.

The implementation of the intended approach must be able to handle several thousand files, and hundred-
thousands of modification- and problem-reports. Consequently, we will use a relational database system to
handle this amount of data efficiently. A pure file-based approach as it is common practice in architectural
analysis with the FAMIX [123] model, has some major drawbacks such as long loading times and large
memory requirements. Furthermore a specific model to store the evolutionary information does not exist
so far. A comprehensive meta model for release history data including a computation model is still work
in progress [124].

12 CHAPTER 1. INTRODUCTION

Figure 1.5 Logical relation of the formulated hypotheses building a “control flow”.

O

Hila %. no correlation?
accept
Hib %. perfect design?
accept
H2) no structure?
accept reject

) source code?
accept reject

o © 0 @

full-accept weak-accept fail

Also at the storage model the link with the architecture recovery process [111] is established. Since
a number of results obtained are file-level based, though finer-grained (method-level) or coarser-grained
(module-level) are possible. We will use file-level information to interconnect the evolutionary with the
architectural models and processes, respectively.

Furthermore to avoid computational overheads, intermediary results will be also stored in the database.
One of these results are for instance the co-change transactions and the respective files. Together with the
problem report information they build the qualified source change information. Other information about
the respective system under inspection are the reconstructed time-scale, source code metrics, or mappings
of features onto source code.

1.3.2.2 Detection of structural entities

Goal G2: A fast and efficient method to detect structural relevant entities from release history and problem
report information.

The implemented method will rely on the hypotheses Hla, Hi1b, and H2 which pave the way for a fast
detection of the relevant logical couplings. Large software systems frequently contain several thousand or
even hundreds of thousands files and therefore a fast and efficient method for the detection of file-pairs
which harm the system structure is important for the monitoring of ongoing projects.

Depending on the filtering strategy, relevant couplings for a further inspection may be for instance
those which have been changed more recently than others. This method is similar to Girba’s Yesterday’s
Weather [69]. It is an analysis method-based on the retrospective empirical observation that classes which
changed the most in the recent past also suffer important changes in the near future. The approach of using
historical information emphasizes the aspect of frequently modified structural dependencies. But also
non-structural dependencies such as data dependencies can be pointed out, presumed that their semantic
modifications also cause frequent changes in the source code.

Visualizations of the logical couplings with respect to their degree of dependency are one result of the
implementation. A system expert can draw his conclusions about the as-implemented system with respect
to the as-designed system. The identified hot-spots are candidates for re-structuring or re-engineering
activities. In the realization of the next goal, the identified out entities are used as input for a further

1.4. RELEVANCE, BENEFITS AND EXPECTED RESULTS 13

investigation of their dependencies and their evolution.

1.3.2.3 Feedback generation

Goal G3: A method for the structural feedback about critical entities and dependencies of the system under
inspection for a longitudinal development.

To fulfill the requirements for this research goal we will rely on Source diff hypothesis (H3) which
is a consequence of the requirement to provide the results in a fast and efficient way. In the case of an
acceptance of H3 we are able to reconstruct the longitudinal development between selected entities and
to detect evolutionary patterns in the evolution of structural dependencies. The idea is similar to Lanza’s
categorization of classes in his Evolution Matrix [93]. Furthermore, based on the extracted structural
information, quality metrics will be established, which provide indications for the structural stability or
instability of a part of a software system.

To remove the barriers between different programming and scripting languages used in the case study,
some minimal meta-information about the implementation details are useful and necessary. Such meta-
information are for instance the form of calls to components, naming conventions, or some basic informa-
tion about the architecture of the system.

We use the following scenario as the motivating example: a button in a graphical user interface (GUI)
is defined in an XML like description language. Some action from the underlying software system may be
bound to this button. The question which shall be answered is, how this button in the GUI is coupled with
the underlying software system and how the respective parts of the system evolved.

Though G3 is as an independent research goal, we will use the results obtained via G2 to instrument
the information generation of this processing step in our case study.

1.4 Relevance, benefits and expected results

Our proposed EvoGraph approach offers a broad spectrum of results for the stakeholder through retrospec-
tive software evolution analysis. Furthermore, for the area of re-structuring or re-engineering our approach
provides also novel insights with respect to a system’s longitudinal development. In the following, we
outline major characteristics of our approach and describe possible impact on related working areas.

1.4.1 Relevance

In our approach evolutionary information such as modification and problem reports or source code data
from different releases are gathered and processed. One key result of the EvoGraph approach is the gen-
eration of detailed information about a system’s longitudinal development with respect to its structural
properties. The approach enables the reasoning about relationships as graphs with two different types of
edges between entities: a historical and structural relationship. Following we discuss this characteristics of
our approach with respect to its environment.

1.4.1.1 Stakeholders

Stakeholders of our approach are system engineers such as software architects, re-structuring and re-
architecting experts, and other researchers in the area of software evolution analysis and architecture recov-
ery. Due to time constraints of customer and market demands on ongoing projects an institutionalization
of new system analysis methods is difficult. In these cases the retrospective analysis is useful to provide
the stakeholders of the project with feedback about pros and cons of past design decisions.

While for the system engineers the generation of appropriate feedback will be the main interest, re-
searchers with interests in architectural evolution might focus on the integration of the EvoGraph approach
or its results into other analysis approaches. Thus, for other researchers also the detailed results of our
case study are relevant for comparative studies. Therefore, the choice of a representative case study has to
provide sufficient information to test and validate related approaches as well.

14 CHAPTER 1. INTRODUCTION

1.4.1.2 Product families

Although our EvoGraph approach is primarily designed for the exploration of a single large software sys-
tem, the application onto a family of related products is enabled via its scalability and the capability to
evaluate different types of historical couplings. For related systems or a product family it is even more im-
portant to ensure the agility of their platform architecture. A product family architecture can be evaluated
as well via the detected and historically related file-pairs and allows one to reason about its potential to
evolve and to accommodate future user requirements. This is of importance for system manufacturers with
large software portfolios, since it is possible to detect deviations early and to react accordingly. To evaluate
a set of related systems or platform architectures other dependency information than logical coupling are
usable as well. For instance, common indicative keywords in the logs of the release history or function
names similar in spelling can be exploited to recover interesting dependencies. This enables the detection
of dependencies across release boundaries and product boundaries as well. Nevertheless, for all analysis
types sufficient historical information in quality and quantity has to be available. The detected depen-
dencies are exploitable with respect to providing of a holistic view about relevant structural dependencies
between different systems or parts of them.

1.4.1.3 Interfacing

Interfacing the EvoGraph results with the structural analysis processes on the “natural” unit of file-level is
possible and profitably for the assessment of the architecture of a software system. Furthermore, also on
the finer-grained level of method and variable names, information about recurring patterns in their evolu-
tion can be exchanged with other approaches such as reverse- or re-engineering approaches by accessing
directly the Release History Database or exporting the required information as RSF [141] data. The anti-
patterns in the evolution of methods and variables point out possible instable structural relations. Metrics
measuring the stability or in-stability of methods and interfaces provide additional clues for the structural
reasoning process. For information exchange the exact reconstruction of a system’s time-scale and released
code versions is required. Otherwise results of various analysis processes are potentially difficult to syn-
chronize since source code entities such as methods may have changed their physical position in a file due
to source code changes.

1.4.1.4 Institutionalization

Possible effects on related research fields are the tighter integration of evolution analysis with existing
structural analysis approaches. With the integration of the evolutionary information into the structural
analysis models, the static characteristics of snap-shot models receive a dynamic component. This dynamic
component is well suited for the institutionalization of prediction models for structural changes. In contrast
to a pure retrospective analysis approach this combined analysis approach has the advantage of pointing out
areas of a system with shortcomings requiring higher maintenance efforts in the near future. This enables
the scheduling of re-structuring activities in accordance with the development strategy of the overall system.

1.4.1.5 Restructuring

A frequent required activity is the re-structuring or re-factoring [109, 60] of a software system during the
development or maintenance phase to accommodate future requirements. In an empirical study [118] we
successfully used logical couplings as indicators for structural shortcomings. Furthermore, it is possible to
validate the effects of re-structuring activities via their further change behavior. Objective is in any case the
improvement of a system’s evolvability. Such improvements are for instance the removal of God classes
via appropriate design patterns.

1.4.1.6 Version control systems (source code configuration)

Main data sources exploited in our case studies are version control and bug tracking systems. As these
systems are primarily designed to track software configurations and problem reports, they have some limi-
tations with respect to our requirements from the software evolution perspective.

1.4. RELEVANCE, BENEFITS AND EXPECTED RESULTS 15

One major shortcoming is the missing integration of the problem reporting system into the version
control system we experienced with the used systems. Other (commercial) tools provide better integration.
With respect to retrospective analysis a classification (new functionality, perfective change, bug fix, etc.) of
the source code changes according to IEEE Standard for Software Maintenance [12] would be desirable.
A classification ex-post is cumbersome and does not deliver adequate results. This information should be
mandatory when committing changes to the repository.

Also some semantic and feature descriptions (interface change, new function, GUI change, etc.) would
be advantages in a retrospective analysis process. Possible application fields are the semantic evaluation of
structural dependencies and their changes. For our and other related analyses the provision of source code
information such as identifiers with name-scopes of the changed source code elements would be beneficial.
Though this is beyond the designed purpose of a version control systems, a mechanism to plug-in such
concepts would ease such new developments.

Development platforms such as Eclipse [1] support already source code parsing. Consequently, a so-
lution is required to store this meta-information in the repositories as well. The advantage would be that
name-triggers could be instantiated and activation of predefined actions could take place. An action could
be a warning message or the evaluation in structural dependencies with respect to new appearances of
dependencies. Although some systems provide specific meta information such as source code patches,
the detection of the correct association within the source code is difficult or even impossible. A formal
mechanism to bind this meta information to source code changes frequently does not exist but would be
required.

With respect to software evolution analysis, the tighter and standardized integration of the different
information sources from the very beginning of a software project would ease the data preparation for a
retrospective analysis and would be also beneficial throughout the whole development phase. Finer-grained
information gathered during, e.g., editing sessions of source files, would contribute to the development of
new analysis methods as well.

1.4.2 Benefits

Code required to realize a certain user required function or software feature may span across several mod-
ules of a system and therefore introduces possible harmful dependencies leading to “ossification” of the
system. A typical usage scenario for the application of our EvoGraph approach is the generation of visual
feedback about logically-related entities in large, long-lived software systems. Main task is the uncovering
of relevant structural dependencies between selected entities based on release history information and in
depth discussion on the basis of the generated visualizations. With the resulting mental model about the
uncovered dependencies in mind, the adjustment of the system’s design and development process can be
initiated and optimized.

1.4.2.1 Dependency evaluation

Via its computational model our EvoGraph approach facilitates the analysis of two indirect related infor-
mation spaces such as temporal data from the system history and concrete data obtained from the system
itself. Data from the temporal dimension such as the logical coupling are used to identify the important ar-
tifacts and relate them to each other. Data from the concrete dimension are for instance structural data with
task oriented characteristics such as source code implementing a new feature. The benefit of this approach
is that the metrics used to assess a system stem from the surrounding environment reflecting the changing
requirements and other influences. Generally speaking, our approach exploits and filters commonalities
based on data in one dimension—the logical dimension—to generated feedback about data in the other
dimension—the structural dimension.

The uncovering of dependencies is performed in retrospective manner to direct the system expert’s
attention to evolutionary hot-spots with outdated or inadequately design properties. As not all modules
or parts of a system are equally important, criterion for pre-filter are for instance abstract concepts such
as the core architecture, certain features, or more concrete entities such as modules. Subsequent analysis
steps are based upon these hot-spots. Furthermore, they have to be considered as first class candidates for

16 CHAPTER 1. INTRODUCTION

re-structuring or re-engineering activities. The support for this advice is based on the evidence extracted
from the release history.

1.4.2.2 Feature analysis

As already outlined features are natural units in the discussion with the users of a system. Therefore, a
central concept of our analysis approach is the application of software feature information in the analysis
process. From the software engineering and maintenance perspective, interwoven software features are
undesirable results of the orthogonal characteristics of abstract concepts and concrete realizations. More-
over, in feature composition larger features are built out of other, smaller features. On the other hand,
with composed larger features the likelihood increases that structural concepts such as module boundaries
are violated. If this violation represents a significant structural harm and are therefore exposed to source
code changes, the resulting frequent changes are recorded in the systems history and can be detected via
our EvoGraph approach. Thus, the determination of the interwovenness provides an important feedback
about the number and kind of dependencies between different features. The evolutionary and structural
analysis indicates expected or unexpected dependencies. Whereas the latter, surprising dependencies may
be responsible for unexpected side effects. Though not all dependencies are resolvable via appropriate
re-structuring activities, the analysis results provide relevant information for the feature engineering pro-
cess and the maintenance phase of a software system to create awareness about possible change impacts
on other features. The systematic detection and indication of structural shortcomings between features are
also results of our approach.

1.4.2.3 Structural shortcomings, evolution tracking, and patterns

The integration of different information spaces, such as history and structure, is a prerequisite for the
reasoning about structural shortcomings, stability and maintainability of a software system. As indicated,
our approach bridges the gap between these two spaces and therefore provides a novel level of quality
for feedback. By exploiting these two information space, the longitudinal characteristics of structural
dependencies between selected sets of entities is reconstructed. Since planned and unplanned structural
structural changes leave marks in both of the above mentioned information spaces, we can reconstruct their
longitudinal development via the analysis of source code deltas provided by version control systems.

The advantage of our approach is the possibility to track the evolution of a software systems structural
dependencies on coarse- and detail-level as well. While coarse-level results inform about evolutionary
dependencies such as modules or sub-systems, the detail-level information e.g., on method or variables,
provides the required insight how the different larger entities are structurally coupled. The benefit for the
system analyst is that s/he receives detailed feedback about the systems agility with respect to the imple-
mentation of different requirements. Focus of such detailed structural analyses are the unstable portions
of the system’s source code. For their identification, the system’s history is mined for frequent modified
file-pairs. Appropriate filtering methodology allows the selection and grouping of files with high relevance
for the systems core or platform architecture.

One result is the evaluation of structural stability, i.e., how much of the structural dependencies have
been added and to removed again from the system. This longitudinal view into the system informs about
past re-structuring or re-engineering events, increasing or decreasing structural dependencies, stagnation
etc. In contrast to metrics-based approaches trying, e.g., histograms depicting lines of code or Polymetric
views, the detected structural dependencies provide qualitative feedback about the acrual relations between
entities such as features, modules, or files.

The second outcome is the detection of evolutionary anti-patterns in a system’s longitudinal develop-
ment. Anti-patterns are for instance short-lived source code modifications also called day-fly, recurring
structural dependencies, or changing responsibilities. Since these anti-patterns are very likely undesired
results of weak designed systems, their occurrence is an indication for possible design erosion or insta-
bilities. Another interpretation is that the inappropriate knowledge about the correct usage of software
components leads to incorrect solutions.

1.4. RELEVANCE, BENEFITS AND EXPECTED RESULTS 17

1.4.2.4 Alternate data sources

In contrast to the type of data exploited in our case study, it also possible to mine navigation information
gathered during editing sessions [122], presumed data in sufficient quantity are available. The recorded
data are for instance files which were inspected and modified for the fulfillment of a certain task. This
editing information can be considered as the logical dependencies between these files. It would replace the
information obtained from version control systems. The navigation information is usually finer-grained and
with respect to the time dimension more actual than information gathered from version history. Recording
editing sessions has more potential than pure recording of logical dependencies. For instance “copy, paste,
modify” sequences could be recorded easily and would deliver interesting information how new code arises.
Data obtained from editing sessions also have the advantage that files which are just opened to review some
functionality but not altered or to read some documentation are captured as well. This type of dependencies
are currently not stored in the source code repositories. A drawback is the requirement for special support
by the tools used to open and modify the files.

1.4.2.5 Visualizations

Part of our approach are a number of visualizations for presenting the results in an appropriate form. These
visualizations on various abstraction-levels—for instance on feature or code-level—support the assess-
ment of the evolution. Other visualizations support the assessment of dependencies between modules and
their respective files. Further interpretation is supported via visualizations of structural change patterns on
method- and variable-level.

A frequently used concept in software analysis is the aggregation of lower-level information onto
higher-levels or the abstraction of concrete code-level information. To obtain a holistic view with respect to
historical dependencies, code-level information is abstracted onto the feature-level and the associated de-
pendencies are projected onto the module structure of the system. The presentation of these dependencies
between features facilitates estimation of maintenance efforts to fix problems concerning a single feature
or a set of features.

A further technology used in our approach are visual clustering tools. Though discrete clustering
delivers valuable results on structural level as draft for further refinement, they have some shortcomings in
pointing out evolutionary hot-spots, i.e., cluster elements which have also a strong coupling with elements
from other clusters. Furthermore, when applying a discrete clustering algorithm, the results may heavily
depend on some initial assumptions or the selection of the distance metrics. More information about
discrete clustering can be found for instance in [138]. A further reason for relying on continuous clustering
is that we use historical information which represents primarily the likeness between different entities
rather than concrete structural dependencies. For instance, a certain module structure may be useful with
respect to system decomposition and anticipating future requirements though it had some shortcomings in
the past. To avoid this situation we basically use visual clustering technologies to produce a layout for the
system engineer where related structural entities are placed close together and unrelated entities are placed
as fare as possible apart form each other. This map with the major related entities and their dependencies
points out the hot-spots of a system from the evolutionary perspective. Affected parts of the architectural
blueprint have to be validated against these designated hot-spots.

1.4.2.6 Continuous monitoring

A further interesting application of our approach is the continuous monitoring for the assessment of on-
going projects. Periodically or based on triggers generated from the version control system, the software
system can be inspected for critical evolutionary dependencies or critical evolutionary patterns such as
recurring changes of structural entities. On receiving the notification about critical patterns, the system en-
gineers can react accordingly upon to fix possible design shortcomings in early stages of the development.
For traditional development models such as the waterfall model with a well designed architecture, this in-
formation is less important since shortcomings in the architecture are difficult to correct. But the advent
of extreme programming methods has created the demand for appropriate guidance of the development
process. Incremental updates of the Release History Database are appropriate means to limit and control

18 CHAPTER 1. INTRODUCTION

the information flow into the monitoring system. Additionally, the application of a temporal lens puts the
focus on the most recent changes or changes within any other timer-interval.

1.4.2.7 Application realization / framework plug-in

Analysis tools such as our proposed EvoGraph approach are instantiated within our EvoZilla framework
and operate on a common databases. Other framework plug-ins may make direct use of the large amount of
historical information already available. Advantageous is also the existing set of data evaluation and access
functions allowing the fast implementation of new analysis approaches. This facilitates the development
of new and the improvement of existing tools since common tasks such as data extraction and preparation
already exist and have not be to reimplemented. Another benefit is the connection with the structural
analysis processes via the Release History Database. Both, the structural and the evolutionary analyses
benefit from accessing the same relational database. Thus, analysis results based on source code entities
such as features, modules, file or method-level can be directly accessed by other approaches analyzing the
same system.

1.4.3 Results

In the course of this thesis we developed a number of intermediate results: directly usable for other re-
searchers and software maintainers are for instance the described approaches, the concept of building the
Release History Database, or the program code. Not of direct use for others are the results from the case
study. The may be of interest when other approaches also exploit the system used in our case study or
comparative studies with other systems are required. Following we summarize the major results:

» Release History Database: we developed a relational database model to accommodate historical
data extracted from the version control system, problem reports, or feature information. Moreover,
import and filtering functions accompany the building process of this central data repository of our
case study;

* to test our research hypothesis we used the Mozilla Application Suite which is a large scale Internet
application. The source code represents more than five years of ongoing development and more than
two million lines of C/C++ code. Other studies have used the Mozilla Application Suite as well
which makes results even more interesting to compare and exchange.

* feature analysis: central to our analysis methods is the application of software features as the selec-
tion and observation unit. Features are also used in the EvoGraph approach to determine a core set
of files for a detailed evaluation of structural dependencies. This is part of our systematic approach
to identify entities with structural shortcomings reflected in a system’s history;

* the analysis framework called EvoZilla is our testbed for approaches such as EvoGraph, EvoTrace,
or EvoFamily. Other approaches may benefit from the reuse of existing functions;

* in the EvoTrace approach we examine the applicability of runtime data for evolutionary analyses.
The dynamic information gathered from different versions of the instrumented application are im-
ported into the Release History Database and exploited to analyze the evolution of the application;

* EvoFamily examines our approach for building a Release History Database from different products
of a product family. Part of the EvoGraph approach is used to exploit the different product data. The
commonalities are extracted and projected onto the system’s module structure to reveal structural
similarities between different products.

The main outcome of our research is the EvoGraph approach. Given as input the system’s history and
source code changes, the approach produces a qualified subset of entities with their corresponding depen-
dencies. They represent the evolutionary hot-spots revealed from the pairwise changes, implicitly recorded
in the change history. They are pointed out in visual form on behalf of the system engineer who has to
interpret the results with respect to the as-designed architecture. The information can be conceived as the
evolutionary echo of the as-implemented architecture. Dependencies can be interpreted as the architectural

1.5. THREATS TO VALIDITY 19

linkage between source code entities or in the case of surprising results as the systems structural deterio-
ration. The task of the system engineer is to validate these dependencies on the basis of the architectural
blueprint and to classify them as harmful if necessary. Other key features and interesting properties with
respect to our EvoGraph approach are:

* history & structure: we exploit both information spaces, first to select and point out entities with
structural shortcomings (evolutionary echo), and second in the subsequent structural analysis step to
identify structural dependencies;

e cross language analysis: the approach of extracting string sequences as identifiers from the respec-
tive source code enables the fact extraction from different types of source code and the subsequent
analysis across language boundaries;

e performance: our approach is 10 to 100 times faster compared to traditional approaches analyzing
structure and evolution. Reason is that we only need incomplete source code information obtained
from source code changes instead of recreating a complete source code model;

* longitudinal view: intermediate result and input to further analyses is the reconstruction of the struc-
tural evolution of selected entities. Detailed information about new, updated, or removed structural
dependencies build the input to pattern detection and stability assessment. Moreover, this longitudi-
nal “elevation” of selected entities also enables the validation of success or failure of re-structuring
or re-engineering events;

* evolutionary patterns: prerequisite for their detection is the fine granular time-interval for the analysis
of source code changes. In the EvoGraph approach we track every change transaction of the source
code—which can be up to several hundred for certain source files; and

e structural stability: our approach facilitates the assessment of structural stability on quantitative-
(e.g., number of modified interfaces) and qualitative-level (e.g., occurrence of evolutionary patterns)
as well.

In the following chapters the EvoGraph approach and the results are explained in detail. An elaborate
case study shows the applicability, usefulness and efficency of our approach.

1.5 Threats to validity

Most relevant for the application of our approach is the choice of a relevant case study with respect to
interesting evolutionary properties such as large, complex, and long-lived software systems which have to
accommodate new or changing requirements. This increases the possibility to find logical couplings in the
recorded history and to find structural shortcomings in the source code. Source code, release history or bug
tracking data are sensitive information about a project’s development and evolution. Therefore, obtaining
access to this data of ongoing or recent industrial projects is difficult and the publication of the results is
only possible under restrictive conditions.

Many approaches have been shown to work with small-sized case studies but rarely multi-million line
software systems with industrial standard development process. Consequently we use data from large
Open Source projects such as Mozilla Application Suite (Internet browser domain) or BSD (a family of
operating systems). Besides source code they provide release history and bug tracking data and secondary
documentation such as design documents, discussion forums and support by the development community.
Some architectural information is publicly available too. A further plus for the Mozilla Application Suite is
the professional style of development by a few specialists (including quality control and patch reviewing).

Historical data are available for at least 5 years for the Mozilla Application Suite and 10 years for BSD
respectively thus a sufficient amount of release history information is available for both systems. With
respect to quality we noticed some shortcomings with the Mozilla Application Suite system due to moved
or identical entries. Since these anomalies are rather seldom they are correctable on an individual basis.

Sources of information about software features are system documentation, the executable program built
from source code, or source code changes, i.e. source code deltas, and release documents. Detailed system

20 CHAPTER 1. INTRODUCTION

documentation may be inaccessible, inaccurate, outdated or not existent at all. The manual effort to map
the abstract feature information from the documentation onto concrete pieces of source code entities is
usually high and error prone. Extraction of software features from the executable program is a difficult and
complex task. Especially applications with a graphical user interface require some kind of user interaction
to activate a specific feature. Code deltas can be used to deduce from the description of features in the
release document their respective location in source code. In either case the required manual effort is high
and thus error prone.

Outdated source code can be difficult to parse due to language constructs such as old style C headers.
Since we rely on source code deltas obtained from the version control system anyway, a customized source
code parser seems to be an appropriate solution. This approach provides the most detailed information
about a system’s longitudinal behavior.

1.6 Résumé

As we will show, logical couplings are sufficient predictors to point out relevant structural shortcomings
within a large, long-lived software system and provide clues about the structure of the as-implemented ar-
chitecture. Our case study with the Mozilla Application Suite indicates the applicability and effectiveness
in pointing out the major artifacts and their structural dependencies. A comparative architectural study we
applied on the same software system was more time-consuming and encountered a number of problems
with the used tools due to size of the system and therefore had to be limited to a subset of the overall system.
With respect to small number of extracted facts from the architectural study, we identified the same entities
with their strong structural coupling. In contrast to a pure architectural analysis approach, we were also
able to provide detailed information about the longitudinal evolution, pointing out flow of structural depen-
dencies between artifacts. Furthermore, we were able to identify Bad Smells [60] such as God classes in
the structural dependencies of our case study. As the experiments with our prototype implementation have
shown, the approach is fully automatable and therefore well-suited to monitor ongoing software projects.
Though the system in the case study is Open Source Software the results are very promising with respect
to the extracted information. Commercial projects with a higher standard in secondary documentation such
as change- or problem reporting are even more promising to evaluate.

1.7 Architecture of this thesis

This section describes the architecture of this thesis and the logical relation of our selected publications.
The citation numbers are according to the bibliography provided at the end of this thesis. Figure 1.6
indicates how the selected publications logically-relate to each other and contribute to this thesis. The
main contributions can be summarized as follows:
* our first publication [56] presents the basic concept of a Release History Database which has been
used for all subsequent publications;
e an evaluation with respect to historical dependencies and problem report information has bin done in
[571;
e paper [52] is built logically on top of the previous publications and adds structural information to the
evolutionary dependencies. Additionally, we have added more detailed feature information; and
* finally in [53] we describe how to obtain structurally meaningful information about the evolution of
a software system.
Next, two publications are devoted to the evaluation of the possible other sources with respect to the de-
tectability of dependencies and exploitability of dynamic information for software evolution analysis:
¢ an evaluation of the approach proposed in [52] with respect to product families has been presented in
[55]. Keywords extracted from change log messages were used to find commonalities between the
different products and to show their logical coupling with respect to module structure; and
* in [54] we evaluated the capabilites of dynamic information for software evolution analysis. The
obtained results are linked on file-level with the data in the Release History Database. With respect
to the EvoGraph approach, the analysis of runtime data provides more information about the actual
implications of source code and configuration changes.

21

1.7. ARCHITECTURE OF THIS THESIS

Figure 1.6 Mental map: Architecture and logical relation of publications which are exploited in this thesis.

MO|H JINsay
7 1daouo0)

MO|41daouoy ~ """ - T T T T~

red Buipesy [(—@

puaba

v Hopmmsoq)/

[STT]C0. SN [ZTT]70.R1LHS

9 I193dey)) - SUOISN[OUO))

¢ - 1eydey)) yIop\ PoIeR[e

1 - 1o9dey)) uonONpoOIU]

[96]€0aANSOT

rm_mohmwo\s

|/

w%&nmzmn

SO - fp1is 0 2 v ey

e umm_mopmmz

[76]G0.0dMI

Burioioejey Y ETRI 2
alnnns

ydeioong

aJel] OAg AllweHong

uonnjoA3

Buuaisn|D % Buidnois uonodg|0) eledg

uonenjea uonealddy

uonepljosuo)

sisayl

22 CHAPTER 1. INTRODUCTION

To verify the architectural properties of our approach we have contributed the following publications which
are also based on data and experiences gained from our work on the Release History Database:

* in [112] we joined the evolutionary and architectural information space to obtain a detailed view
about the interplay between them;

 in [118] we have used the concept of the Release History Database to evaluate the evolution of a
commercial software system. Based on the evolution data, we pointed out structural shortcomings
and observed the success of re-structuring activities. This paper also supports the hypothesis that
structure and its changes can be detected via their traceable footprints.

1.8 Further reading

Following the red line', further reading is organized as follows:

e An overview about related work with focus on software evolution analysis and reverse architecting
is given in Chapter 2;

 In Chapter 3 we describe our approach for building a Release History Database for the systematic ex-
ploration of historical information obtained from software systems. We provide in depth information
about the data extraction from the respective sources and the import of the prepared data. Subsequent
processing steps such as the recovering of co-change transactions and grouping of logically-coupled
entities are described as well. We also argue why we did not follow the classic approaches for
partitioning software systems;

e Our approach for the systematic identification of relevant structural entities is presented in Chap-
ter 4. We explain which resources can be exploited and how they can be used characterize structural
dependencies and their effects on longitudinal development. Results are a systems hot-spots with
notable influence on a systems evolution;

e The case study using the Mozilla Application Suite is presented in Chapter 5. We show how the
structural shortcomings are reflected in the systems history. By means of a stickiness view we show
how the logical coupling of the entities leads to clusters of structural dependent files. Detailed
source change analysis informs about structural stability and reveals evolutionary patterns. We also
demonstration how run-time and product family information can be exploited to characterize its
evolution; and

* Chapter 6 concludes this thesis and indicates future work.

'In the city of Vienna the subway line U1 connects Kagran on the northern bank of the Blue Danube with Reumannplatz in the
South.

Chapter 2

Related Work

While structural analyses such as the approaches of Miiller and Klashinsky [107] or Biggerstaff [29] tradi-
tionally received a high degree of attention already for some decades, software evolution analysis appeared
on the research agenda just recently. Hence, data format standards and analysis tools are still missing or
under development. Following we review the most influencing and state-of-the-art literature with respect
to software evolution analysis, architecture recovery, and software visualization.

2.1 Building a release history database

The first step in the application of the EvoGraph approach is the establishment of an appropriate data en-
vironment which we called Release History Database. Similar to our environment, Draheim and Pekacki
proposed a framework for accessing and processing revision data via predefined queries and interfaces [43].
Linkage of their data model with other evolutionary project information—such as problem report data as
required for our analyses—and making them accessible for external queries is beyond the scope of their
work. Notable is also the approach called Kenyon by Bevan et al. [25] which is a data extraction, prepro-
cessing, and storage backend designed to facilitate software evolution research. Though it was released as
open source project [24] it does not seem to be actively maintained anymore. Newer proposals for instance
concern the creation of a reference database. In [90] Kim et al. proposed an exchange language capable
of making sharing and reusing software repository data as simple as possible. The proposal is part of the
TA-RE project which aims at the building of a collection of release history data of different projects to
facilitate mining activities and benchmarking.

Currently, some research work is done within the Controlling Software Evolution (COSE) [124] project
to establish a meta model for release history data. A proposal for such a meta model has been documented
in [102]. Another meta model for software evolution analysis has been proposed by Girba and Ducasse
which is called Hismo [70]. History is modeled in their proposal as an explicit entity. It adds a time
layer on top of structural information, and provides a common infrastructure for expressing and combining
evolution analysis and structural analysis.

2.2 Release history mining

The analysis of software evolution based on release history information and the visualization of these results
has been addressed by only a few researchers so far. Some of them also have used the Mozilla Application
Suite for their investigations. For example, Mockus, Fielding, and Herbsleb used it in a case study about
open source software projects [105]. They exploited data from CVS and the BugZilla problem tracking
system but—in contrast to our work—focused on the overall team building and development process such
as code contribution, problem reporting, code ownership, and code quality including defect density in final
programs, and problem resolution capacity as well.

With respect to release history mining, in [130] Taylor and Munro describe an approach based on revi-
sion data to visualize aspects of large software such as active areas, changes made, or sharing of workspace

23

24 CHAPTER 2. RELATED WORK

between developers across a project by using animated revision towers and detail views. Since their ap-
proach is purely based on revision history, additional important information such as problem reports or
feature data are not considered for visualization. Bieman et al. [28] used change log information of a small
program to detect change-prone classes in object oriented software. The focus was on visualizing classes
which experience common frequent changes, which they called pair change coupling. Instead of grouping
logically-coupled objects they used standard UML diagrams together with a graph showing the number
of pair change couplings between change-prone classes to visualize their analysis results. Similar to an
earlier approach proposed by Gall et al. [62], Kemerer and Slaughter used modification reports as basis for
their analysis [87]. They applied a refined classification scheme [126] on modification reports (corrective,
adaptive, perfective enhancement, and new program) for an analysis of ordered change events and put quite
some effort in the classification of change events. As a result, they were able to reveal different phases of
a system’s life cycle. Unfortunately, formal mechanisms to record such historical data during the devel-
opment process are still not supported in software development tools. While they thoroughly investigated
the longitudinal development of the system with respect to different phases, our focus is the visualization
of—possibly hidden—dependencies between components of a system reflected by any kind of traceable
pattern, e.g., commonly and frequently changed modules or common problem reports.

2.3 Evolution analysis

In [62, 63] Gall, Hajek, and Jazayeri examined the structure of a Telecommunications Switching Software
(TSS) over more than 20 releases to identify logical coupling between system and subsystems; a similar
study has been carried out by Bieman et al. in [28]. Based on release history data of this TSS, Riva et al.
presented an approach to use color and 3D to visualize the evolution history of large software systems [64].
Colors were primarily used to highlight main incidents of the system’s evolution and reveal unstable parts
of the system. In the interactive 3D presentation it is possible to navigate through the structure of the
system on a very coarse level and inspect several releases of the software system. Our work could benefit
from the 3D visualization in that way that feature dependencies are visualized on a fine-grained temporal
level.

Zimmermann, Diehl and Zeller presented a fine-grained analysis approach for CVS data that considered
all kinds of entities starting from the statement-level [149]. Their ROSE prototype identifies common
changes between syntactical entities rather than files or modules, which are the focus in our work. Hsi
and Potts [80] studied the evolution of user-level structures and operations of a large commercial text
processing software package over three releases. Based on user interface observations they derived three
primary views describing the user interface elements (morphological view), the operations a user can call
(functional view), and the static relationships between objects in the problem domain (object view). To
obtain a holistic view about the evolution of a software system, the integration of data from code analyses
and release history data is required such as they are provided by our EvoGraph approach.

In [92, 94] Lanza depicts several releases of a software system in a matrix view using rectangles.
Width and height of the rectangles represent specific metrics (e.g. number of methods, number of instance
variables of classes) according to the history of classes are visualized. Based on this generated evolution
matrix, classes are assigned to different evolution categories such as, for example, pulsar (class grows and
shrinks repeatedly) or supernova (size of class suddenly explodes). He analyzes the evolution of classes,
whereas we focus on features and their couplings. However, a combination of both approaches could be
promising.

2.4 Product family evolution

Within the EU projects ARES [10], ESAPS [14], CAFE [16], and Families [17] much work has been
done in areas such as the identification of assets for product family architectures, evolution and testing
of existing product families, or architectural models for product families. The project results have been
compiled into a series of books: Jazayeri et al. [82] or van der Linden et al. [133, 134, 135, 136]. Closely
related to our work on product family evolution is the approach presented by Riva and Del Rosso in [121].

2.5. ARCHITECTURE RECONSTRUCTION 25

They investigated the evolution of a family platform and describe approaches which enable assessment and
reconstruction of architectures. In contrast to their work, we investigate the evolution of different variants
to identify candidates for building a family platform.

2.5 Architecture reconstruction

Architecture reconstruction is concerned with the reconstruction of a system’s architecture from the avail-
able artifacts such as source files. The reconstruction of the as-implemented architecture is a prerequisite
for the evaluation of an architecture’s stability.

Kazman and Carriere proposed with Dali [86] a workbench that aids a software engineer in extracting,
manipulating, and interpreting architectural information through different views. By assisting in the recon-
struction of architectures from extracted information, Dali helps to re-document architectures, discover the
relationship between as-implemented and as-designed architectures, analyze architectural quality attributes
and plan for architectural change.

Another view-based architecture reconstruction approach named NIMETA [120] has been proposed by
Riva. He emphasizes the scrupulous selection of architectural concepts and architecturally significant views
that are reflecting the stakeholder interests. Medvidovic and Jakobac proposed a bi-directional approach
called Focus to evolve a system’s architecture [103]. Their approach is driven by evolution requirements
and applied iteratively. Each iteration is composed of two interrelated steps: architectural recovery and
system evolution. Using this approach, the architecture of the original system is partially recovered, evolved
to address new requirements, and enriched with detail in an incremental fashion. ArchView [111] proposed
by Pinzger is an approach for the detection and visualization of bad smells in a system’s architecture. He
uses facts extracted from different releases of the source code and the release history of the system. Based
on these facts metrics are evaluated which point out structural shortcomings. The evolution of the system on
different abstraction-levels is depicted via the metric values using an extended version of Kiviat diagrams.

A relation to our work with architecture reconstruction exists insofar as we are interested in pointing
out structural shortcomings hampering a system’s evolution. Most reconstruction approaches are static
and seldom take evolutionary properties into account. As a consequence, these shortcomings may remain
undiscovered, harm architectural stability and aggravate maintenance. In [81] Jazayeri noted already that
in opposition to traditional predictive approaches to architecture evaluation, retrospective analysis could be
used for evaluating architectural stability by examining the amount of change applied in successive releases
of a software product.

2.6 Coupling analysis

Though prior studies used co-changes for mining dependencies [27, 148], they basically relied on co-
changes which represent adhesion. The less conspicuous co-changes which account for the stickiness have
not been subject to detailed research work so far to characterize their properties on a global level and to
draw their evolution over a systems life time.

With respect to coupling analysis, Zimmermann et al. inspected the release history data of several
software systems for logical coupling between source code entities [148]. They drew the conclusion that
augmentation of architectural data with evolutionary information could reveal new otherwise hidden de-
pendencies between source code entities. With similar goals in mind, association analysis was also used
in the work of Ying et al. [146] for change predictions. In contrast to their work, we systematically iden-
tify the evolutionary hot spots in a system and then add structural information from source code change
analysis. However, our focus is not the prediction of candidates for possible source code changes.

2.7 Visualization of couplings

Our approach is related to visualization in that we filter logical coupling and use visual clustering tech-
niques to provide a meaningful view on the stickiness between selected source code entities. With Ev-
oLens [117] Ratzinger et al. proposed an approach which supports the projection of low-level couplings

26 CHAPTER 2. RELATED WORK

into high-level views. One shortcoming is the limited filter capability which does not support the applica-
tion of metrics for advanced filtering purposes. SHriMP is an earlier approach by Storey et al. [125] with
focus on the presentation on software structure and code that combines both pan+zoom and fisheye-view
visualization metaphors in a single view. As with EvoLens it is not designed to highlight dependencies
which require expressive filtering mechanisms. In [36] Churcher et al. focus on coupling and cohesion
of classes in a software system. The main difference is that we use logical coupling instead of structural
properties. Beyer [27] used clustering techniques for grouping files based on Noack’s [108] proposal for
visual graph clustering. By adding a dynamic component Beyer improved his approach to study a system’s
evolution as animated sequences. His approach is called Evolution Storyboards [26]. Though based on
the same clustering approach, the main difference of EvoGraph to Evolution Storyboards is that we go
beyond the pure visualization of their evolution. Our focus is on the detection of structural shortcomings
and revealing their evolutionary patterns.

2.8 Clustering of artifacts

Since our primary focus is not on developing a new clustering or modularization approach, we rely on
existing technologies to group related artifacts. Wiggerts [138] provides a good overview about the possible
application of clustering techniques with respect to re-modularization of legacy systems. Various clustering
approaches and their aspects are discussed in detail. One conclusion is that a system will evolve further after
it has been re-modularized and therefore the modularization will require incremental updates. For the study
of evolving systems this seems a major drawback since trends will not be discernible from the clustered
system and changes will appear suddenly in a discrete fashion. Dickinson et al. [42] used multidimensional
scaling to cluster execution traces of faulty programs and compare the output with pre-determined test-
cases. Our approach differs in that we operate on source-level and problem reports indicated on features
and source-level elements. In a thorough study about the application of clustering techniques to software
partition, recovery and restructuring Lung et al. [100] applied these techniques on different abstraction-
levels of a system and different project stages. Besides a number of difficulties they encountered during
the application of the discrete clustering approaches, they also concluded that no matter what clustering
technique is adopted, there is always a chance that the method may generate unexpected results or will not
generate expected results. Expert involvement is therefore recommended for postmortem analyses.

2.9 Dynamic analysis

Most related work we have seen so far, track the evolution of software systems by relying on static infor-
mation about software artifacts or correlate the source code changes with respect to their programmers.
For instance, Ball and Eick have proposed such approaches in [22, 45, 46]. Other reverse engineering
approaches take the dynamic execution behavior into account and try to infer certain program character-
istics based on these traces. In [74], for instance, Gschwind et al. presented an approach that allows one
to identify how certain features within a program are implemented. This approach is based on execution
traces and interactive program queries during the program’s runtime. A similar approach is taken by the
Smiley system presented in [71]. For this system, Goldman uses wrappers to log the interaction between
an application and its external dynamic link libraries (DLL). This work facilitates the understanding of
interactions between commercial off the shelf where no source code is available. Other research work on
execution traces mainly focused on the visualization of execution traces [83] or detection of patterns to
overcome the problem of size explosion [76]. Further, they have been used to dynamically discover likely
program invariants that must be preserved when modifying and evolving source code [48].

Collberg et al. present an approach that takes possible executions into account by analyzing the evolu-
tion of the program’s call-graph through static analysis [38]. This is accomplished by generating call-graphs
for the different versions of the program, merging these call-graphs, and finally highlighting the differences
between the call-graphs. Analyzing the differences in the call-graph, however, still falls short in getting a
glimpse of the typical runtime behavior of the program to be analyzed since the call-graph does not give
any information about how frequently certain functions are being invoked and hence does not provide a

2.10. PARSING AND SOURCE CODE ANALYSIS 27

deep insight into the communication patterns between different parts of the program.

2.10 Parsing and source code analysis

Due to the sometimes high frequency of source code changes in our case study and the small amount
of applied deltas, the reconstruction and parsing of the complete source files is not necessary since we are
interested only in changing dependencies and less interested in structural changes. Similar to island parsing
[106, 127], we are searching for constructs which are required for our dependency analysis. Furthermore,
frequently used words—such as common function names—are of minor interest and therefore sorted out.
In [67] German studied the characteristics of source code modifications with focus on development process
related issues. While we directly use the source code deltas to detect change dependencies, he uses two
complete source code versions to extract the structural information. Moreover, our focus is on revealing
the co-change triggering source code element.

In [101] Maletic and Collard proposed an approach to analyze source code differences based on its
XML representation. The difference to our work is, that we are mainly interested to track the evolution of
the change dependencies. Since they do not support structural dependency information, their representation
would be of limited advantage for us. The approach proposed by Xing and Stroulia [143] is similar to
Maletic’s approach in the sense that they rely on a meta data representation of the software system. More
recent is the work from Fluri et al. [59]. The focus of the proposed approach is on the identification of
fine-grained changes within a set of frequently co-changed files. They have used Java files in an Eclipse
environment which is quite homogeneous compared to the Mozilla Application Suite consisting of interface
definitions, GUI definitions, glue code and other maintenance files.

2.11 Résumé

Following we provide a not scientifically accurate (nsa) classification of selected approaches with respect
to architecture and evolution. They are set into relation with a non-existent future approach denoted as
[*], which finally fully integrates architectural and evolutionary analyses including prediction models into
a single approach. Figure 2.1.(a) depicts the subjective result. The evolutionness (the degree a system
supports evolutionary analyses) is aligned to the horizontal axis and indicated via pink colors while the
structuredness (the degree a system supports structural analyses) of an approach is aligned to the vertical
axis and also indicated via blue colors. Detailed results about percentage evolutionness and structuredness
are listed in Figure 2.1.(b) together with the bibliography references.

Though there haven been many more approaches proposed, we can only cover a few of them as it
is required to justify our approach. As outlined at the beginning of this chapter the structural analysis
approaches do not consider evolutionary information. As a consequence, the earlier approaches are static
approaches considering only a single snapshot in the life-time of a system. Holt, Biggerstaff, Miiller or are
typical approaches for structural analyses. Though evolutionary metrics can be incorporated, they are not
explicit designed to support evolutionness. A full-fledged stat-of-the-arte commercial system for source
code analyses is Imagix4D. Its focus is the provision of structural information. Evolutionary analyses are
not supported.

An early attempt in the 1990s to reflect the notion of change in a retrospective analysis approach is
Eick’s proposal. His focus is the visualization of line oriented software statistics based on release history
data. A few years later, Gall provided the first proposal to systematically exploit logical couplings. Besides
files or modules no further structural information was used. The evolutionness is therefore higher compared
to other approaches introduced so far. Based on Gall’s findings about logical couplings, Pinzger proposed
an analysis approach to detect structural shortcomings based on source code metrics and logical coupling.
His proposal does not support the detection of evolutionary patterns. A forecast model is also missing.
The evolutionness and structuredness is therefore moderate. Related with Pinzger’s analysis approach is
the proposal of Zimmermann. He systematically explored the relationship between structure and logical
coupling of a software system. The results validate this assumption and also indicate a high variance
between different systems. A step into the direction of a more detailed analysis of coupling between source

28 CHAPTER 2. RELATED WORK

Figure 2.1 Mining classification with respect to properties of evolutionary and structural analyses.

Structure [%0] Approach E[%] | S[%] | Year | Biblio.
["] Holt 0] 90| 1999 [79]
o Biggerstaff 0| 80| 1989 [29]
alft Imagix4D 0| 70 - (3]
iggerstaff Miiller 0 60 | 1988 [107]
magix4D Eick 10 10 | 1992 [45]
Fller Pinzger 16 40 | 2005 [111]
Fluri 24 34 | 2005 [59]
Pinzger Gall 24 4 | 1997 [63]
o OFluri EvoGraph Lanza 30 28 | 2001 [92]
Y. O @ Ratzinger 30 6 | 2005 | [118]
g oYing Zimmermann 54 18 | 2003 | [148]
C];)ick O Beyer EvoGraph 62 32 | 2006 [53]
Gan© © Ratzinger Beyer 70 12 | 2006 [26]
Evolution [%] Ying 80 18 | 2004 [146]

(a) Mapping of approaches onto structural and evolutionary (b) Detailed results for approach

dimension

code elements is the proposal by Fluri. He investigated the relationship between fine-grained source code
changes and logical coupling.

Though Lanza uses several releases to extract metrics of a software system, he did not use release
history or detailed structural information. Advantages is the possibility to detect evolutionary patterns
and shortcomings in the visualized metrics. Thus we attest moderate evolutionness and structuredness.
About at the same level of evolutionness as Lanza, Ratzinger proposed to use logical coupling to observe
the success of re-factoring activities. The structuredness is low since the proposal is primarily designed the
verify the success of changes and not to propose changes. Another approach with respect to visualization of
evolutionary changes is Beyer’s proposal which is related to partitioning as well. The evolutionness is high
due to the used storyboard technique but has a low structuredness since the approach remains on file and
module-level. Ying also relies on evolutionary information and provides a prediction model. Furthermore,
structural information are used to identify interesting results obtained from their model.

In our EvoGraph proposal we use logical coupling to systematically point out structural shortcomings
in a software system. Moreover, via fine-grained analysis of the release history we extract evolutionary
patterns in structural changes which provides a high level of evolutionness combined with a moderate
level structuredness.

Chapter 3

Building a Release History Database

The Release History Database is the central repository related to all activities concerning our retrospective
software evolution analysis. It allows one a quick access to all types of information collected and computed
for the artifacts under inspection. Modification- and problem reports imported from the respective sources
of a software project constitute the basis for the evolutionary analyses. By adding related information such
as product-, module-, or feature-information from secondary documentation or runtime data, the database
turns into an important asset for structural analyses. Furthermore, the database lays the foundation for the
creation of a holistic view on a system’s evolution.

Large and complex software systems require the application of an efficient method to store and retrieve
information. Our decision to use a relational database model to store the evolutionary information has
inspired several other proposals for building storage models for evolution [43, 68, 70, 102]. The challenges
in preparing such a database are the re-construction of change transactions, detection of anomalies and
inconsistencies in a file’s history, or reconstruction of a project time-scale from the available evidence.
Once realized, the database is a valuable resource for software evolution analysis. In this chapter we will
focus on the foundations of a software evolution analysis “data-warehouse”. A detailed evaluation of the
Release History Database is provided in in Chapter 5.

3.1 Information extraction from source code repositories

An important aspect in maintaining large software projects with world-wide contributors—such as open
source projects—is that global changes affecting large parts of the repository are published in a transaction-
oriented way. We have already defined a source code change transaction is a timely coherent sequence of
check-ins of several, not necessarily logically-related files into the source code repository. When con-
sidering the logically-related files, we can empirically observe, that the process of applying the changes
adheres—up to a certain extent—to the ACID paradigm known from database transactions. Overall ob-
jective of this process is to keep the repository in a well-defined state for all stakeholders. Since each
transaction has to be prepared manually, it is more an organizational than a technical issue. Without en-
forcement of the ACID properties we would not be able to detect any logical coupling since then each file
could be separately checked-in. The four ACID properties for change transaction can be characterized as
follows:

e Atomicity: this property depends on the person who manually checks-in the source code changes
and is therefore more difficult to maintain. Check-ins are usually not tested beforehand and therefore
artifacts may not be checked-in;

» Consistency: for organizational reasons, source code changes are implemented and tested outside
the repository and then checked-in into the repository. The objective of the check-in operation is
to transform the repository from one consistent state into another one. This can be expressed as a
simple function transforming a source code revision into another one: R’ = f(R);

29

30 CHAPTER 3. BUILDING A RELEASE HISTORY DATABASE

* Isolation: files are usually locked by the version control system on behalf of the person which checks
in the source code changes. Therefore no two changes can interfere with each other; and

* Durability: all source code changes are written back to the repository. The effect can only be undone
via an explicit second change transaction;

The reason for the validity of the ACID assumption is the requirement to maintain the integrity (half
implemented functions, syntax errors, undefined symbols, etc.) of such projects. The integrity itself is
ensured via nightly builds and periodically applied regression tests. As a consequence, parameter type
change, for instance, require the modification of both ends of an invocation relationship. Thus the callee
and the caller have to be modified at the same time which emerges as co-change or in possibly ill-structured
systems as logical-coupling in the course of their evolution.

Next, we focus on the extraction of the required information from the release history. Objective is the
development of the required foundations to discover these logical-couplings.

3.1.1 Information extraction from CVS

Basically, CVS [35] is designed to handle revisions of textual information by storing deltas between subse-
quent revisions in the repository. This works well on text files such as source code since they can be com-
pared line-by-line. Binary files can be stored in the repository as well, but they are not handled efficiently.
CVS which is used as source code repository in our Mozilla case study has another major drawback: trans-
actional information about co-changes are not recorded. Hence we have the reconstruct this information
from the available evidence. First step is the exploration of the available data material.

3.1.1.1 Revision numbers

Typically, version control systems distinguish between version numbers of files and software products.
Concerning files, these numbers are called revision numbers and indicate different versions of a file. In
terms of software products they are called release numbers and indicate the versions of a software product.

Each new version of a file stored in the CVS repository receives a unique revision number (e.g. 1.1
for the first version of a file checked-in). After an update of a file and a commit of the changes into the
CVS repository the revision number of each affected file is increased by one. Because some files are more
affected by changes than others these files have different revision numbers in the CVS repository.

A release represents a snapshot of the CVS repository comprising all files realizing a software system
whereas the files can have individual revision numbers. Whenever a new version of the software system is
released a symbolic name (i.e. tag) indicating the release is assigned to the revision numbers of the current
files. The relation symbolic name - revision number is stored in the header section of every tagged file in
the repository and also appears in the header section of the CVS log files.

Branches are common to version control systems and indicate a “self-maintained” development-line
[35]. Each branch is identified by its branch number. CVS creates a new branch number by picking
the first unused even integer, starting with 2, and appending it to the file’s revision number where the
corresponding branch is forked off. For example the first branch created at revision 1.2 of a file receives
the branch number 1.2.2 (internally represented as 1.2.0.2). The main issue with branches is the
detection of merges. Unfortunately this is not supported by CVS. With respect to our case study, an
empirical evaluation indicated that most branches are for testing purposes such as a bug-fixes and therefore
a further consideration is not required.

3.1.1.2 Version control data

In the repository the version control and historical data are stored in work-files. One work-file for each
artifact. From there, log file information can be retrieved by issuing the cvs log command. The spec-
ification of additional parameters allow the retrieval of information about a particular file or a complete
directory. 3.1 depicts an example log file taken from the Mozilla project showing version data of the source
file nsCSSFrameConstructor.cpp as it is stored by CVS.

3.1. INFORMATION EXTRACTION FROM SOURCE CODE REPOSITORIES 31

Listing 3.1 Sample of a CVS log file from the Mozilla project.

RCS file: /cvsroot/mozilla/layout/html/ style / src /nsCSSFrameConstructor.cpp,v
Working file : nsCSSFrameConstructor.cpp
head: 1.804
branch:
locks: strict
access list :
symbolic names:
MOZILLA_1_3a_RELEASE: 1.800
NETSCAPE_7_01_RTM_RELEASE: 1.727.2.17
PHOENIX_0_5_RELEASE: 1.800

RDF_19990305_BRANCH: 1.46.0.2
keyword substitution : kv
total revisions : 976; selected revisions : 976
description :
revision 1.804
date: 2002/12/13 20:13:16; author: doe@netscape.com; state : Exp; lines: +15 —47
Don’t set NS_.BLOCK_SPACE_MGR and NS_BLOCK_WRAP_SIZE on ...

revision 1.638

date: 2001/09/29 02:20:52; author: doe@netscape.com; state : Exp; lines: +14 —4
branches: 1.638.4;

bug 94341 keep a separate pseudo frame list for a new pseudo block or inline frame ...

RCS file: /cvsroot/mozilla/layout/html/ style / src /nsCSSFrameConstructor.h,v

3.1.1.3 Sample CVS log information

Basically, a log file consists of several sections, each describing the version history of an artifact (i.e. file)
of the source tree. The snippet of the CVS log in Listing 3.1 indicates the structure of information which
can easily extracted via standard client programs. Sections are separated by a line of =" characters.
For the population of our release history database we take into account the following attributes:
RCS file: the path information in this field identifies the artifact in the CVS repository;

symbolic names: lists the assignment of revision numbers to tag names. This assignment is individual for
each artifact since revision numbers may differ;

description: lists the modification reports describing the change history of the artifact starting from its
initial check in until the current release. Besides the modifications made in the main trunk all changes
which happened in the branches are also recorded there. Reports (i.e. revisions) are separated by a
number of ’-’ characters:
¢ the revision number identifies the source code revision (main trunk, branch) which has been
modified;
¢ date and time of the check in are recorded in the date field;

e the author field identifies the person who did the check in;

CHAPTER 3. BUILDING A RELEASE HISTORY DATABASE

32

Figure 3.1 Database scheme for the Release History Database.

cvsalias

id

name

date
usagecount

projstruct

id

parentid
nodename
nodestate

sourcediff
id
cvsitemid
cvsitemal revision-a cvsitemfeature feature featureset
* revision—-b * 1 *
cvsitem * codedelta | * n<w=maa id featureid .
cvsalias featureid fname subfeatureid
- * fdata
revision
1 1 1
evalresult cvsitem 1 cvsitemlog . 1 cvsauthor
*
id * 1 id id . id
cvsitem rcsfile cvsitem author
evkey workfile revision
evtype 1 head date -
evclass locks author 1| cvsitemloggroup
evobject access state id
keysubst 0L cvsitemlogid
revtot Idel roupidx
1 revsel branches mnx_ Qﬂ
cvsitemprojectstruct revision description slotidx
- cvsitemid 1 1 bugreportdesc
projectstructid x . bugreport
id
invosequence cvsitemlogbugreport id bugreportid
* bugfile_loc 1 * | who
id cvsitemlog bug_severity bug_when
callee bugreport short_desc thetext
caller op_sys
type priority
threadid product
version
component
cvsitemid resolution
invofuncid target_milestone
sourceline ga_contact
keywords

3.1. INFORMATION EXTRACTION FROM SOURCE CODE REPOSITORIES 33

* the value of the state field determines the state of the artifact and usually takes one of the
following values: “Exp” means experimental and “dead” means that the file has been removed;

* the lines fields counts the lines added and/or deleted of the newly checked in revision compared
with the previous version of a file;

* if the current revision is also a branch point, a list of branches derived from this revision is
listed in the branches field (e.g. 1.638.4 in Listing 3.1);

* the following free fext field contains informal data entered by the author during the check in
process.

The above listed information is automatically extracted from the repository and imported in our Release
History Database with the used schema as described in the next section.

3.1.1.4 A blueprint for release history information

Figure 3.1 depicts the most relevant entities of the Release History Database. Origin for all mining activities
is the cvsitem table which provides the main information about the artifacts of the software system under
inspection. Most other entities link to cvsitem via their foreign-key cvsitemid.

Every artifact (i.e. file) of the CVS repository has a corresponding entry in the cvsitem table storing
the attributes extracted from the log file. To resolve the m:n relationship between symbolic names (i.e.
tags) and revisions of files we introduced the two entities cvsalias and cvsitemalias. Whereas cvsalias
holds the symbolic name information, cvsitemalias contains a record for each entry extracted from the
symbolic names section found in log files. Data about modification reports is stored in the cvsitemlog table.
It contains an entry for every modification found in the log file. The corresponding author information is
handled by cvsauthor.

Problem reports (see Section 3.2) are directly imported from the problem tracking system into the
bugreport table. The current attributes of this entity are derived from the BugZilla system and may be
extended to address other problem tracking systems. Particularly, the link of problem reports with modifi-
cation reports is important for software evolution analysis. We realized this link by the cvsitemlogbugreport
table as m:n relation. The table contains the bug report numbers found in the modification reports together
with the respective modification report ID.

3.1.2 Repository evolution

A snapshot of an example CVS repository is depicted in Figure 3.2. It shows a series of check-ins of
two authors a and b, respectively. The different transactions are indicated via T, ,, where x denotes the
author and y the timestamp of the whole check-in transaction. Each check-in of a file is logged via a
different time-stamp. Since only the currently affected file during a check-in is locked, different check-in
transactions may run in parallel such as T}, ;,, and T}, ;.

An important problem with respect to our case study were large source changes which affected hun-
dreds or even thousands of files. Transaction 7, ;,,, symbolizes such an event. They have a wide spread
effect on different modules and obfuscate the relevant co-changes. This data has to be filtered out or con-
sidered explicitly during further evaluations. Relevant for software evolution analysis are the cross cutting
change transactions depicted as transaction 715, +,, which happen, as already outlined, less frequently com-
pared to local co-changes.

Since CVS has no notion about co-change transactions, we need to recover this information from the
available evidence. Notable two sources exist to recover this information:

too

* when logging is enabled the time-stamp of the commit—which is the same for all files of a change
transaction—can be used. This information is recorded in a file called CVSROOT/ history;

e another option are the time-stamps when an artifact is checked-in into the repository which is recorded
individually for each artifact and is kept together with artifacts information in the repository. This
data can be retrieved as log-information in plain text format.

Though the first source would provide more accurate data—its availability depends on the configuration
of the repository—we have to use the latter one for the Mozilla case study to reconstruct the information.

34 CHAPTER 3. BUILDING A RELEASE HISTORY DATABASE

Figure 3.2 Evolution of CVS repository with respect to different check-ins, recovery of co-change trans-
actions and release date information

Tag(v1.3) C"(v1.3) C'(v1.3) C(v1.3)
Tb,t55 6maa: Tb,tlzo Ib,t135
= : : Lo : J

. CVS-Repository :

RFl(t120) =1.3 RFl(t170) =14
. . . o

1 =

Ta,tgo Ta;t120
70 102 137
50 75 100 125 150 [t]
T maz . Check-in Timestamp ts,, — ... Artifacts

This implies that the transactions have to be recovered from the individual time-stamps of each checked-in
file.

Characteristically for co-change transactions is their creation in an ad-hoc style. In contrast to database
transactions, the check-in operations are not planned or tested beforehand. Possible threats to validity are:

« forgotten check-ins: changes in artifacts have been forgotten to check-in. As result the completing
check-in operation has a large timely offset. Therefore, two co-change transactions are recovered;

* unrelated check-ins: the changes made in the software system have no logical relation but were con-
temporaneously checked-in with identical textual descriptions, e.g., one description for all changes.
Consequently they are recovered as a single co-change transaction;

« different descriptions: two check-in operations may be logically-related but a different textual de-
scription was used for some reasons, e.g., typo or additional bug fix at one file. Two co-change
transactions would be recovered; and

e large change transactions: changes which affect several hundred or even thousands of files require a
large amount of time—sometimes even several hours. An approach with a too small maximum value
for the time-window will recover several small co-change transactions instead of a single transaction.

Thus, it is not possible to reliably recover all “true” co-change transactions. To ease a further analysis of
the recovered transactions, we use an extensible time-window with a “snap-radius” to capture check-ins of
the same author. As it is simpler to split large transactions into sub-transactions than to recombine a set
of small transactions, we do not consider the textual description at this stage as criterion in recovering a
transaction. Possible sub-transactions are identified later via their differing or identical textual description
and split off from the larger transaction. Thus, we use Algorithm 1 to detect the co-change transactions
from the modification reports.

In the reconstruction of co-change transactions we use slightly different approach with respect to [111]
to reflect the nature of manual check-in operations. A manual inspection of modification reports has shown
that transactions are possible with a duration of more than one hour and also frequently modification reports
with slightly different text occurred, e.g., forgotten files. As empirical results of our case studies have

3.1. INFORMATION EXTRACTION FROM SOURCE CODE REPOSITORIES 35

Algorithm 1 Reconstruction of change transactions from sorted list of modification reports.

1: function GROUPLOGS
2 Omaz = 900 > default time-window is 900 seconds
3 V «‘select * from cvsitemlog order by author,date®
4; W —{} > output list with transactions
5: while V' £ {} do &> while not empty
6 R; — V.first() > return first element and keep tail
7 to < R;.time + dmax
8 T, — L; > create new transaction record
9: R; — V.first()
10: while R;.author = R;j.author A Rj.time < to do
11: T, —T,UR; > add to transaction
12: to — Rj.time + dmaa > adjust time-window to snap radius
13: R; — V. first()
14: end while
15: W —WuT, > add new transaction
16: end while
17: return W

18: end function

shown, the error rate is about the same for both variants. Since it is easier to separate them later if necessary
instead of finding related groups, we build only a single group for those entries where the text differs but
the ID of the author is identical. We therefore have the following different characteristics for recovering
change transactions:
* the change log message is not considered since forgotten files in manual check-ins frequently have
different messages;
* a dynamically extensible time-window of 900[s] captures also change transactions with more than
one hour duration.
The recover transactions are stored in the relation cvsitemloggroup and can be uniquely identified via the
assigned groupidx. Along with the group information we stored two other meta-informations:
* time-slot which determines the period between two subsequent releases and is derived from the
determined release dates; and
e tickidx which is a fine-grained artificial time-scale base on a three hour interval. This time-scale is
used to provide an alternative means of sampling for time-series analysis of the modification reports.

Later, we will use this recovered information to determine the logical coupling between files. Consequently,
it determines the selection of entities for further analysis.

3.1.3 Release date synchronization - defining a global time-scale

A peculiarity of open source projects is the publication of the source code. It is provided in different fla-
vors which also stem from different stages of the production process. In our analyses we use the source
code changes and the modification reports provided directly by the respective repository. This information
reflects the continuous stream of information recorded in the repository. It allows the reconstruction of
any development stage at any individual point in time. In contrast to this, in structural analysis it is ad-
vantageous to use the released source code package instead of a reconstructed version from the repository.
Consequently, to obtain a coherent view with other approaches the obtained timely information must be
synchronized with the official release dates which have a discrete characteristics.

3.1.3.1 Software configuration management

Though we are not directly working on software configuration management [21, 39] we need to extend our
vocabulary to ease the discussion about system releases and file revisions. We begin with the definition of

36 CHAPTER 3. BUILDING A RELEASE HISTORY DATABASE

a revision as an individual modification applied onto a particular file. Consequently, a series of different,
subsequent revisions determines the version of a file used in a specific configuration. A revision-number
is therefore defined as an ordinal number uniquely identifying a specific version of a file. In configuration
management the individual revision-numbers are not only impractical to handle but have also the drawback
that for a selected configuration a large number of individual revision numbers have to be specified. To
overcome this limitation the orthogonal concept of tag-names provide means to mark all individual revi-
sions of a configuration. Thus a tag-name is defined as a symbol assigned to a specific revision for each file
of set. During the data extraction from the source code repository, the tag-names are counted and stored in
the table cvsalias of our Release History Database. The counter values are used to automatically identify
the release date candidates.

Finally, we define a specific software configuration as the set of files and their individual revisions which
constitute a specific version of a software system. The software configuration management system (e.g.,
CVS) keeps track of the individual configurations and provides facilities to extract a specific configuration
from the system.

3.1.3.2 Release date recovery

The semi-automatic recovery of the release dates is based on the tag-names available in the repository.
During the import process the appearances of the tag-names are counted and their time-stamps are recorded
as well. Objective of the recovery process is the identification of possible release dates. The required
heuristics to obtain usable results is the systematics of the tag-names and the release intervals (e.g., monthly,
for the system in our Mozilla case study).

Algorithm 2 computes the “true” release dates Ry, ; based on the beforehand mentioned input data.
The results for the reconstruction of the release dates in our case study are listed in Appendix C.

One key-concept used in the approach is the assignment of different priority-levels to matching tag-
names. For this purpose the getpriority function uses an ordered list of regular expressions (rg|r1|. .. |rn),
whereas the first expression has the highest priority. The priorities are then used as index to address the
different FIFO-buffers of the priority queue. All relevant tag-name candidates for a single time interval
are added to the priority queue from where the best candidate is chosen. Algorithm 3 outlines the applied
strategy.

Usually the first entry in the priority queue is used as the result for the best matching release date in
Algorithm 3. To consider possible important increases in the project size as well, we use an adaptable
weighting scheme for the other entries of the priority queue. A 10% increase in the number of usage count
of a tag-name is the default compensation for a lower priority. This has the effect that versions with sudden
increases in the number of project files are considered as release versions (law of Continuing Growth [95]).

3.1.3.3 Synchronization

One problem with the reconstruction of information is the synchronization with information from external
sources such as release dates. The release dates are required to obtain a consistent view with the develop-
ment cycles of the system and also to synchronize with other analysis approaches such as ArchView which
are usually applied on the released packages. Source code repositories record a “continuous” stream of
source code changes. Though they are set to a “frozen” state to obtain a specific system release, the release
date is usually different from the freeze date but the latter one determines the source code changes rele-
vant for a given release. Consequently, release dates are arbitrarily selected dates which do not necessarily
correlate with the time-stamps of the change transactions. Three different kinds of release dates have to be
considered during evaluation in the EvoZilla framework. They are denoted as follows:

* t(Ry(;.;)) the official release date for release version i.j, e.g., as announced by the manufacturer.
This information does not necessarily correlate with the time-stamps ts in the repository;

. t(R/vi _J_) the date obtained from the officially distributed software packages, e.g., source code or
binaries packages; and

. t(R"}i _j) the date obtained via revision information from the repository as approximation for the
“true” release date.

3.1. INFORMATION EXTRACTION FROM SOURCE CODE REPOSITORIES 37

Algorithm 2 Release date recovery from list of tag-names.

1: function RECOVER

2 A «rhdb.sql(”select * from cvsalias order by date, usagecount”)

3 P — new priority_queue() > allocate multiple fifo-buffers

4 R’ —{} > list of recovered release dates

5: i — 0 > last interval

6 ny «— 0 > last usage count

7 while A # {} do

8 ac «— A.first()

9: De — ac.getpriority() > priority is derived from predefined list of keywords
10: i < ac.getinterval() > based on selected release period, e.g., monthly
11: Ne — ac.getusagecount() > aliases were counted during import
12: if i. # i; then > exploit the last interval
13: Ry, L CHOOSEBEST(p,.) > choose the best alias candidate for this interval
14: P « new priority_queue()

15: end if

16: if n; < n. then > found new best usage count
17: P.add(pe, a.)

18: ng < Ne

19: end if

20: ifn; >n.An < ncg then > allow 20% deviation of best value
21 P.add(pe, a.)

22: end if

23: if n; = n. then > usage counts are equal
24: P.add(pe, a.)

25: end if

26: end while

27: return R

28: end function

Algorithm 3 Choose best tag-name from priority queue.

1: function CHOOSEBEST(P)

2: ap < null

3 py <0

4: ny <« 0

5: while P # {} do

6: ac < P.first()

7 Pe — ac.getpriority()

8 ne < ac.getusagecount()

9 if ny + (pe — o) 75 < n. then

10: ap < Q¢
11 Do < Pc
12: Ny < Ne
13: end if
14: end while
15: return a;,

16: end function

> P is our priority queue

> best priority
> best usage count

> get first alias from the priority queue
> current priority

> current count

> plus some tolerance

> return best rated alias from this queue

38 CHAPTER 3. BUILDING A RELEASE HISTORY DATABASE

Theoretically, the following relation should hold for every release of a software system:
t(Ry,) <t(Ry,) <t(Ry,,) 3.1

Threats to validity are unsynchronized computer clocks or manipulations of files before packaging. Another
problem is the time difference between dates when the release snapshot (code freeze) is taken and the
official release date. Thus, T, ,, € C(v1.3) as depicted in our example might be true (see Figure 3.2).
C'(x) describes the source code configuration for a given time-stamp or release version. Consequently,
we obtain three different configurations from the repository: C(x) as the “official” one via the release
date; C’(z) via the file change date from the distributed packages; and C”'(z) via information from the
repository.

To resolve this confusion, we evaluate the fag information [35] available in the repository of our case
study. A tag-name is a symbol assigned to a specific revision to each file of a selected set. Thus it is
possible to tag the revisions of all files which are used to build a specific release of a software system. In
Figure 3.2 Tag(v1.3) assigns a symbolic name to the most current revision of each file which complies
with the release configuration C/(ts5). We therefore exploit this symbolic information to obtain the desired
approximation t(RY, (i_j)) for the “true” release date. Changes to the configuration after this date have to
be considered for evaluation of the next release of the system.

3.2 Problem Reports

Problem reports aka bug tracking data are an important source to qualify and link related modification
reports. The information available in the Mozilla Application Suite case study stem from the BugZilla
problem tracking system. Linkage with the version control system is provided via means of problem report
IDs added as free text to the description fields of the CVS modification reports. Consequently, this linkage
as to be validated to obtain a trustworthy data basis.

Potential for evolutionary analyses is in the additional information of the problem reports which provide
some description about the causes of changes. Furthermore, problem reports appearing in different co-
change transactions may indicate continuous problems or inadequate solutions.

3.2.1 BugZilla

As additional source of information to the modification reports, problem report data from the BugZilla
problem report database is imported into our Release History Database. Access to BugZilla is enabled
via HTTP and reports can be retrieved in XML format. The information will be used later to classify the
corresponding modification reports found in CVS. This enables the identification of error-prone files or
modules which are candidates for re-structuring or a re-design.

A sample of the available information is provided in Listing 3.2. Besides some administrative infor-
mation such as contact information, mailing addresses, discussion, etc., the problem report also provides
interesting information for the evolution analysis such as bug severity! of the affected product or compo-
nent:

bug_id: this ID is referenced in modification reports. Since the IDs are stored as free text in the CVS
repository, the information cannot be reliably recovered from the change report database;

bug_status (status whiteboard): describes the current state of the bug and can be unconfirmed, assigned,
resolved, etc;

product: determines the product which is affected by a bug. Examples in the Mozilla Application Suite
are Browser, MailNews, NSPR, Phoenix, Chimera;

component. determines which component is affected by a bug. Examples for components in the Mozilla
Application Suite are Java, JavaScript, Networking, or Layout;

dependson: declares which other bugs have to be fixed first, before this bug can be fixed;

blocks: list of bugs which are blocked by this bug;
Vhttp://www.mozilla.org/ quality/ bugzilla-code- definitions.html

3.2. PROBLEM REPORTS 39

Listing 3.2 Sample BugZilla data in XML format as extracted from the problem tracking system.

<bug_id>100069 </bug_id>
<bug_status>VERIFIED </bug_status>
<product>Browser</product>
< priority >——</priority>
<version>other</version>
<rep-_platform>All</rep_platform>
<assigned_to>doe @mozilla.org</assigned_to>
< delta_ts >20020116205154 </delta_ts>
<component>Printing: Xprint</component>
<reporter >doe @mozilla.org</reporter>
< target_milestone >mozilla0.9.6</ target_milestone >
< bug_severity >enhancement</bug_severity >
< creation_ts >2001—09—17 08:56</creation_ts>
<qa_contact>doe @mozilla.org</qa_contact>
<op-sys>Linux</op_sys>
<resolution >FIXED </resolution>
<short_desc> Need infrastructure for new print dialog </short_desc >
<keywords>patch, review </keywords>
<dependson>106372</dependson>
<blocks>84947</blocks>
<long_desc>
<who>doe @mozilla.org</who>
<bug_when>2001—-09—17 08:56:29</bug_when>
< thetext> </thetext>
</long_desc>

bug_severity: this classification field for a bug report (blocker, critical, major, minor, trivial, enhancement);
and

target_milestone: possible target version when changes should be merged into the main trunk.
Aside from the descriptive information offered by the problem reports, we also exploit part of the reports as

filter criterion in the determination of the logical coupling. A more restrictive filtering, for instance, could
exclude all changes which relate to enhancements.

3.2.2 Plausibility check of problem report IDs in modification reports

As already stated above, the linkage between modification- and problem-report information has to be vali-
dated since the information was entered as free text. We validate the linkage via a set of regular expression
obtained from a manual inspection of reports containing IDs in the range of valid problem reports but
not matching regular expressions. In conjunction with the regular expressions, we use the following meta
information to describe related actions:

* confidence describes the reliability of the result. A sequence “bugid=100069” is rated as high,
whereas a sequence looking like “32767” is not considered as problem report ID. For the confidence
we use a simple three-level schema (low, medium, high);

* positive match: if the expression matches, it supports the hypothesis that the number found was a
problem report ID;

* negative match: indicates that the number is not a problem report ID and used in a different context,
e.g., used as identification for a patch or an attachment;

» complex test: the declared regular expression is used as prefix a general expression to detect one
problem report ID or a list of IDs. The matching process of the whole expression restarts if a new
sentence indicated by one of the following four characters . : ;) is detected; and

40 CHAPTER 3. BUILDING A RELEASE HISTORY DATABASE

 simple test: in contrast to the above, the regular expression is matched as declared.

The results of this plausibility check is used to update the m:n relation between cvsitemlog and bugreport
with the confidence value. Apart from uncovering this linkage, the import process itself is simple and
straight forward due to the data provided in XML format.

3.3 Features

3.3.1 Feature extraction

The goal of our feature extraction process is to gain information about an executable program to map the
abstract concept of features onto a concrete set of computational units. A computational unit can be a block,
method, class, sub-module, or file. The extracted information augments our Release History Database with
observations about particular releases of a product and can be used to apply evolutionary analyses on
the feature-level. Results of the analyses support the illustration of dependencies and changes in large
software systems. We restricted ourselves on dynamic feature analysis, since we are basically interested on
a representative set of test-data for the case study with the EvoGraph approach.

The used extraction process is based on Software Reconnaissance analysis technique [139, 140] and uti-
lizes code instrumentation for its application. This approach using GNU tools [8] has been also addressed
in brief by Eisenbarth [47]. Concept analysis is used to validate our assumptions about the composition
of features within the application. Currently, the whole feature extraction process is limited to file-level
analysis but could be extended onto method-level as well.

3.3.1.1 Extraction process

The extraction process as depicted in Figure 3.3 resembles a simple pipe and filter architecture and is
therefore well-suited to be operated in traditional batch style. This is useful, since some of the following
steps are computationally intensive. Therefore, we first create all necessary data and then initiate the
analysis process. The extraction process is as follows:

1. the application executes on of the defined scenarios (see also Table 3.1). The result of this step is a
file holding the profile data created by the GNU runtime library. Different scenario data are stored in
different files and are post-processed on a file-by-file basis.

2. amodified version of the GNU gprof program [72] is used to extract the method-name-to-file-name
mapping. This has to be done only once since the symbol information is static. For every scenario
created in the previous step the call graph is generated using the unmodified version of GNU gprof
and stored in separate files;

3. with the help of a Perl script all call graphs are parsed and the function and method names are
mapped onto file names using the mapping from the previous step. For easier manipulation and as
consistency check, the file names are looked up in the Release History Database and replaced by
their corresponding cvsitemlog IDs. Output of this step are the binary relationships between file IDs
and scenarios IDs;

4. from the binary relationship data a single concept lattice [97] is generated (see Figure 3.4(b));

5. the analysis of the concept lattice identifies the computational units (i.e., in our case files) specifically
required for a feature. Hence it provides the mapping of features onto files. The result of this step is
a list of file IDs required to realize a specific feature; and finally,

6. aPerl script imports the extracted feature information into the Release History Database. This feature
information extracted from a specific release is then used as approximation about the implementation
of all other releases.

The critical part in the feature extraction process is the identification of the computational units. Following
we give an overview about the theoretical foundations and provide a small example with relation to our
Mozilla case study.

3.3. FEATURES 41

Figure 3.3 Feature extraction process from runtime information.

’ 1. Run scenario ‘

—= gmon.out

‘ 2. Crate call graphs ‘

—== method—-name-map.txt, gprof.out

‘ 3. Parse profile information ‘

= binrel.txt

‘ 4. Create concept lattice ‘

= lattice.txt

‘ 5. Extract feature information ‘

= feature.dat

‘ 6. Import feature data ‘

Table 3.1 Scenario definitions for runtime data generation.

Scenario Description

sNull Mozilla start / blank window / stop

sTC-HTTP TrustCenter.de via HTTP http://www.trustcenter.de/

sTC-HTTPS | TrusterCenter.de via SSL/HTTP https://www.trustcenter.de/
sTC-File read TrustCenter.de from file

sMathML mathematics in Web pages

http://www.w3.0rg/Math/testsuite/ testsuite/ General/ Math/math3.xml
sAbout “about:” protocol

3.3.1.2 Formal concept analysis

Formal concept analysis is a mathematical technique that provides insights into binary relations. The
mathematical foundation of concept analysis was laid by Birkhoff [30] in the 1940s. Primarily Lindig
and Snelting have introduced concept analysis to software engineering [99]. With respect to feature ex-
traction [47] it has shown to be well-suited to point out dependencies of the data in the feature extraction
process by providing a better insights into their binary relations. The mathematical details however can be
found for instance in Ganter and Wille [66]. A good overview about formal concept analysis with respect
to information science has been published recently by Priss [115]. Readers which are more interested in
formal concept analysis are encouraged to use one of the referred resources.

3.3.1.3 Feature extraction and formal concept analysis

Concept analysis uses the terms objects and attributes which we map onto files (functions, methods) and
scenarios (scenario in terms of a use case scenario). Consequently, we provide a basic scenario to extract
some Mozilla features (see also Chapter 5). Table 3.1 lists details. Here, we use 6 attributes (scenarios)

42 CHAPTER 3. BUILDING A RELEASE HISTORY DATABASE

Table 3.2 Concept matrix for the defined scenarios and expected file-sets.

\ Attribute — 0 1 2 3 4 5
| Object \ sNull sTC-HTTP sTC-HTTPS sTC-File sMathML sAbout
0 oCore X X X X X X
1 oHtml X X X X X
2 oFile X
3 oNetwork X X X
4 oHttp X X X
5 oHtml X
6 oMathML X
7 oBlank X
8 oAbout X

to obtain 9 objects (file-sets) as listed in Table 3.2. It suggests already that no trivial 1 : 1 mapping of
scenarios onto file-sets for all features exists, since many of the features are composed of other smaller
features. Hence, the appear in different scenarios. For instance feature fHttp is used in the scenarios
sTC-HTTPS or sMathML and consequently the information obtained from both execution scenarios has
to be considered in the extraction process.

To obtain a better insight into the composition of features, we generated a concept lattice from the data
in the concept matrix. Figure 3.4(a) depicts the result. By convention, on top of the graph is the most
general Concept (set of programs which implement all features required by the different scenarios) and is
denoted by T. It has all formal objects in its extension. Its intension is often empty but does not need to be
empty. The “smallest” Concept resides on the bottom (set of programs which are common to all scenarios
= core functions) and is usually denoted by L. In our graph denotes as Core. It has all formal attributes
in its intension. If any of the attributes exclude each other, then the extension of the bottom Concept must
be empty (which should never be the case in a software system). The nodes in Figure 3.4(a) represent the
formal concepts. Labels of the formal objects are noted on the left side below and formal attributes above
the respective nodes. Open circles indicate empty Concepts (Concepts without own attributes), whereas
filled circles indicate the Concepts with own attributes.

To obtain the file-set for a certain feature, we need to compute the difference between the extension
of the respective Concepts. As examples we use the features fHttps and fHttp. The lattice depicted in
Figure 3.4(a) suggest that feature fHttps can be directly derived from the objects of the Concepts 1 and 2
which have the scenarios {STC-HTTPS} and {sTC-HTTPS, sTC-HTTP}, respectively, as their inten-
sion. Based on the file-sets obtained from the runtime information during the execution of the scenarios,
the extraction of feature fHttps can be nicely written as the following set operation:

fHttps = (sTC-HTTPS)\(sTC-HTTP). (3.2)

This is possible since TC-HTTP represents basically the only sub-Concept of TC-HTTPS. The sub-
Concept-super-Concept relation is depicted in Figure 3.5. In our second example the situation slightly dif-
ferent, since feature fHttp is used in three different scenarios: sSTC-HTTPS, sTC-HTTP, and sMathML.
To obtain the desired file-set we subtract the extensions of Concept 3 from Concept 2:

fHttp = (STC-HTTP)\ (sTC-File). (3.3)

Or alternatively, we can build the intersection of the extensions of Concept 2 and 5, and then we subtract
the extension of Concept 4:

fHttp = (sTC-HTTP NsMathML)\ (sAbout). (3.4)

Evaluating the actual runtime information provides a more complex picture about the composition of
features from the source code. Figure 3.4(b) depicts the actual concept lattice derived from the runtime
data. Though the upper part of the concept lattice is similar to the expected results, unexpected and new
Concepts appeared. They increasing the number of Concepts from 9 to 17. Concept 15 is for instance

3.3. FEATURES 43

Figure 3.4 Concept lattice deduced from concept matrix and the actual results obtained from the Mozilla
Application Suite as Hasse diagrams.

(M

' 2)
Blank . MathML ‘/

Core

(a) Concept lattice deduced.

M

Blank

;01112131415)

Core

(b) Actual concept lattice.

44 CHAPTER 3. BUILDING A RELEASE HISTORY DATABASE

Figure 3.5 Example for sub-Concept-super-Concept relation.

Concept TC-HTTPS '(”2539”5'0”:

extension:
nsSSLSocketProvider.cpp
nsHttpRequestHead.cpp

Concept TC-HTTP '(Teg)s'on:

extension:
nsHttpRequestHead.cpp

is such an unexpected Concept since during the execution of the scenario sNull, some network functions
were used as well. Another surprise is Concept 13 which adds a single file to its extension. The file
xpfe/components/timebomb/nsTimeBomb.cpp is used only in this scenario.

Though there are a number of changes in the concept lattice, the extraction of the fHttps feature re-
mained equal since there is only one path down from Concept 1 (i.e., Concept TC-HTTPS) to 2 (i.e.,
Concept TC-HTTP). Hence, we need collect the formal objects only for this path. For feature fHttp the
situation is different, since we have several paths to travel down from Concept 2 (i.e., Concept TC-HTTP)
to the bottom Concept. Now, formula 3.3 is not sufficient anymore since a common sub-Concept does not
exist anymore. Instead of Concept 7 as in lattice 3.4(a) we have now 4 different sub-Concepts (14, 9, 6,
and 11) which are connected via different paths. As a consequence, we have to adapt Formula 3.4 to reflect
this situation. We therefore add scenarios which have a common sub-Concept with Concept 2 on one of
the paths down in the concept lattice. Formula 3.5 describes the final set-operation:

fHttp = (sTC-HTTP NnsMathML)\ (sNull UsTC-File UsAbout). (3.5)

Based on the runtime data, we can compute the file-set for feature fHttps with Formula 3.2. This
results in six files for release 0.9.2 of the Mozilla Application Suite as listed in Listing 3.3. The same

Listing 3.3 Resulting files for feature fHttps of Mozilla Application Suite release 0.9.2.

security /manager/boot/ src /nsSecurityWarningDialogs . cpp
security /manager/ssl/ src /nsNSSCallbacks.cpp

security /manager/ssl/ src / nsNSSCertificate .cpp

security /manager/ssl/src /nsNSSIOLayer.cpp

security /manager/ssl/ src /nsSSLSocketProvider.cpp
netwerk/ socket/base/nsSOCKSSocketProvider.cpp

query executed on the runtime data for release /.3a yields two additional files (see Listing 3.4). A manual
inspection revealed, that these files existed already in 0.9.2 and were commonly used during the execution
of all scenarios.

Listing 3.4 Additional files for feature fHttps in release /.3a

security /manager/ssl/ src /nsNSSComponent.cpp
security /manager/ssl/ src /nsNSSModule.cpp

3.3.1.4 Further use of concept analysis

The derived concept lattice depicts already the difficulties which have to be expected using more complex
scenarios for feature extraction. A single concept lattice of large sets of objects and attributes can become

3.4. GROUPING OF RELATED RELEASE HISTORY INFORMATION 45

Figure 3.6 Example for different results based on the selected metrics [138].

c /\6\\ /\6\\ /’/6\\
A7 TS N On SRR O ,T TS \
JO 00 1T [0 o 06549 Jo 0 O.
Rt SN /O i oY S~ O
A /O// B A /O// B A \\ O/// B’
(a) initial situation (b) single linkage (c) complete linkage

fairly large and complex. Visualizations of concept lattices are only of interest if they are not too messy to
be comprehensible for a human user. The only information which such visualizations provide is that the
underlying lattice is complex. Lindig and Snelting [98] use this as an advantage in one case: by showing
that the concept lattice of dependencies between different pieces of software code is extremely messy,
they provide an argument for not attempting to re-engineer such code. Experiments with the Mozilla
Application Suite used in our case study indicated the complex structural relationships within the system.
From the defined twelve scenarios in our case study we obtained more than 90 elements for the concept
lattice which rendered it difficult to obtain useful file-sets from the lower Concepts. Consequently, for
the extraction of feature information we will rely on an approximation which uses the unique parts of the
Concepts.

3.4 Grouping of related release history information

Prior to further analyses, the large amount of dependencies obtained from the release history needs to be
arranged in a useful way to facilitate the further discussion about shortcomings in the system. As already
pointed out, logical couplings are not randomly and equally distributed over the whole structure of a system,
rather they reflect the frequent co-changes of dependent structural entities.

In re-engineering, clustering approaches are frequently used to improve a systems module structure
via re-modularization based on structural coupling metrics. The goal is to produce an improved version
with respect to the decomposition of the system. An often mentioned problem with clustering methods is,
that many methods impose a structure rather than finding “natural” clusters. A solution would be to use
appropriate metrics and algorithms to impose the “correct” structure [138]. Decomposing an ill-structured
system to obtain an initial proposal is a feasible and useful method. However, it can be assumed that an
“appropriate” algorithm is not known a-priori with respect to the concealed evolutionary and structural
shortcomings within large and complex software systems.

3.4.1 Hierarchical clustering

One frequently applied method to cluster entities are agglomerative hierarchical algorithms. Update rules—
they are used when the similarities can not be computed from the original data—for the similarity measures
after joining or splitting clusters are an example for the impact on the overall result. They play an important
role, for instance, in how the different small clusters should be combined into larger clusters. When two
clusters C; and C, are joined, the update rule computes the similarity between an already existing cluster
C, and this new cluster. The following single linkage rule yields that cluster B is as similar to A U C as it
is to the most similar of A or C"

singlelink(B, AU C) = max(sim(B, A), sim(B, (C)).

In contrast to the previous rule, the complete linkage returns as result the least similar of the old clusters
which would be B:
compllink(A, BU C) = min(sim(A, B), sim(A4, C)).

Assuming the situation of Figure 3.6(a) with the single link update rule, the results are usually non-compact
and isolated clusters (see Figure 3.6(b)). In contrast to this, the complete linkage update rule will find

46 CHAPTER 3. BUILDING A RELEASE HISTORY DATABASE

compact cluster which are not very well separated (see Figure 3.6(c)). The example also illustrates that a
single entity can have a great influence on the resulting clustering.

Consequently, instead of proposing a new decomposition of an existing software system based on the
logical couplings, we use this information to point out the structural shortcomings via visual clustering.
The advantage is that critical constellations are preserved and just pointed out. To draw a conclusion and
react accordingly such as applying an appropriate design pattern lies in the further responsibility of the
system engineer.

3.4.2 Introduction to multidimensional scaling

The goal of multidimensional scaling (MDS) is to map objects i = 1,..., N to points ||x; — x| € R* in
such a way that the given dissimilarities D; ; are well-approximated by the distances ||x; — x,|| whereas k
is the dimension of the solution space. MDS is defined in terms of minimization of a cost function called
Stress, which is simply a measure of lack of fit between dissimilarities D; ; and distances ||x; — x;||. In its
simplest case, Stress is a residual sum of squares:

1
2
Stressp (... xv) = (D = s = 1)) (36)
i#j
where the outer square root is just a convenience that gives greater spread to small values [33].

For our experiments we used metric distance scaling which is a combination of Kruskal-Shepard dis-
tance scaling and metric scaling. Kruskal-Shepard distance scaling is good at achieving compromises in
lower dimensions (compared to classical scaling) and metric scaling uses the actual values of the dissimi-
larities in contrast to non-metric scaling which considers only their ranks [33].

The generation process of the dissimilarity matrix can be formally described as follows. A problem
report descriptor d; of a problem report p; is built of all artifacts a,, which refer to a particular problem
report via their modification reports m, (linkage modification report— problem report; see also Figure 3.8):

d; = {an|aank A mkRpi}- 3.7

The distance data for every pair of problem report descriptor d;, d; are computed according to the formula
below and fed into the Dissimilarity Matrix.

1 if p;Rp;,

Lo (3.8)

diSt(di, dJ) = {

where s; and s; denote the size of the descriptors d; and d; respectively. The fraction % is used to emphasize
the distance between unrelated objects and weak coupled objects. All values are scaled according to the
maximum number of elements the descriptors can have in common, i.e., they are scaled to the size of the
smaller one.

An alternative way of specifying distances is to use edges and weights. We use a logarithmic function
to emphasize the connections with higher values, while connections with lower values are weakened. This
has the effect that the nodes with stronger connections are moved closer to each other than nodes with
only a few connections. The weight for an edge between two nodes v; and v; are computed by the follow-
ing formula, whereas n specifies the current number of connection between the two nodes and 1,4, the
maximum number of connections between two nodes of this graph:

In(n)

Welght(vw v]) 0 Lln(ﬂmaa:)

*8+41.5] (3.9)
All weights are mapped by the above formula onto a range of [1..9] where 9 means the closest distance.
Other integer values not covered by the given range cause the visualization program Xgvis [33] to hang or
crash. Now we just need to define when two problem reports are linked: p; and p; in the Release History
Database are linked via a software artifact a,, if a modification report my, exists such that

anRmy A miRp; A miRp; (3.10)

3.4. GROUPING OF RELATED RELEASE HISTORY INFORMATION 47

Figure 3.7 Dissimilarity similarity matrix ® and resulting graph G.

/Q\b
011 1 2 P
1 0 1 1 2 c

@i
De=(11 0 1 2 vl o4 o
1 11 0 1
2 2 2 1 0 o0&
(a) Dissimilarity matrix (b) Resulting layout
or two modification reports my, m; exist such that
anRmg A mipRp; A a,Rm; A mlRpj. 3.11)

3.4.2.1 Example

To illustrate the optimization process we use a simple graph consisting of 5 nodes with the following edges
and weights: G = {(a,b,1), (a,¢, 1), (a,d, 1), (b, ¢, 1), (b,d,1),(c,d,1),(d,e,1)}. Xgvis automatically
transforms these 3-tuples into the dissimilarity matrix depicted in Figure 3.7(a) and the missing distance
values are completed by Xgvis. The graph after optimization with Xgvis is depicted in Figure 3.7(b) (set-
tings and result: dim=2, metric, krsk/sh, Stress = 0.1202).

In our example, we use edges and weights to describe the similarity between nodes of the project
structure. Formally, two nodes v; and v; of the graph G are connected if a path within the project tree
exists between these nodes such that we can define a relationship R in the form v;Rv;, or alternatively the
nodes share a problem report, denoted as v;Rp,, A v;Rp,,. The weight for an edge between the nodes is
computed via Formula (3.12), in which n specifies the current number of connections between the two
nodes and 7,4, the (global) maximum number of connections between any two nodes of the graph.

n

weight (v;, v;) = (—1)(¥ 4o (3.12)

nmaw

For an offset o = 1 all weights are mapped by the above formula onto a range of [0..1] where 0 means
the closest distance [33]. Since a weight of 0 is disadvantageous in the optimization process, because
objects would be placed on the same position, an offset of o = 1.2 was used. With parameter k it is
possible to influence the spread between nodes, i.e., more edges are treated of similar weight and thus the
spread will become large. This is advantageous in the layout, since closely related nodes are placed next
to each other but do not overlap. A value of £k = 0.2 turned out to be the best trade-off for visualization
purposes.

3.4.3 Energy based layout

A more recent and alternative approach to layout the dependencies between artifacts and problem reports
is the application of an energy base clustering algorithm such as proposed by Noack [108] called edge-
repulsion LinLog energy model. The main difference between models—such as Fruchtman and Rein-
gold [61]—and the new LinLog model is, that edge lengths are not treated uniformly in the new model. In
the LinLog model, the attraction and repulsion is exploited to build sets of related nodes.

In multidimensional scaling, as used in the previous section, distances are treated as graph theoretical
distances, i.e., which is defined as the length of the shortest path between two points. Energy-based graph
layout methods liken graph vertices to physical objects that exert forces on each other. Graph vertices
that are connected by an edge attract, to ensure that they are placed closely. All pairs of graph vertices
repulse, to ensure that non-related vertices are placed at larger distances. The resulting graph layout is
an energy-minimal state of the force system. The LinLog model Uy 1.04(p) of a drawing p is defined as

48 CHAPTER 3. BUILDING A RELEASE HISTORY DATABASE

Figure 3.8 Example for relationship between bugs, files, and features. The numbers indicate modification
reports with associated problem reports.

Feature-B
fB2
Bug 40
Im g
Bug 41
102864
Feature—A Bug 31 LLyees B4
/ g Bug 44
AB Bug 32 Bug 60
fa1
Bug 2 Bug 3 f Bug 61
B3
102864 Bug 71 Bug/34 Bug 62
Bug 01 102864 Bug 50 Bug 63
Bug 02 Bug 51
fa2 Bug 52
102864
Bug 11 209318
117993
209318
follows:
ULintog@) = Y llpu=poll = D deg(u)deg(v)Inllp, —pol|. (3.13)
{uv}eE {u,w}eVv(2)

In this formula, p is a layout (i.e., a mapping of the vertices to positions in two- or three-dimensional space),
U (p) is the energy of p, p,, and p, are the positions of the vertices u and v in the layout p, ||p, — p, || is the
Euclidean distance of « and v in p, and deg(v) is the number of edges incident to a vertex v [27].

The first term of the sum can be interpreted as attraction between vertices that are connected by an
edge, because its value decreases when the distance of such vertices decreases. The second term can
be interpreted as repulsion between all pairs of (different) vertices, because its value decreases when the
distance between any two vertices increases. The repulsion of each vertex v is weighted by its number of
edges deg(v). Through this weighting, the second term is more naturally interpreted as repulsion between
all pairs of edges than between all pairs of vertices. More precisely, the repulsion acts not between the
entire edges, but only between their end vertices. So the basic ideas are that the edges in the coupling
graph cause both attraction and repulsion, and that every edge causes the same amount of attraction and
repulsion [27].

3.4.4 Exploiting logical couplings

EvoGraph exploits the logical couplings to identify evolutionary relevant entities and to generate visual-
izations as feedback for the system engineer. These visualizations are based on a graph G(V, F') whereas
the files represent the vertices and the logical coupling the edges. The logical couplings can be either
unqualified or qualified. In the following example we use qualified logical couplings (see Figure 3.8).

3.4. GROUPING OF RELATED RELEASE HISTORY INFORMATION 49

Figure 3.9 Resulting graph based on the information from Figure 3.8.

far 102864 fB1

(102864) (102864)

faz
<
f
- ”

From the feature extraction process we obtain the disjoint file-sets representing the functionality for a
feature. Considering our example, feature F'4 consists of the files { fa1, fa2}, feature Fg = {fB1, fB2,
fBg7 fB4}~ They share the problem reports P = {p1028647 P117993, P154375, pgogglg} which constitute the
logical coupling between the two features. The file f4p is considered to be part of the feature fCore as
outlined in the feature extraction process (see Chapter 3). The described information is transformed into
the following weighted, undirected graph:

G = (fAl?fAQa 1)7 (fA17fBl7 1)a (fA?»fBla 1)7 (fA27 fBQa 1)7 (fA?afB372)' (3]4’)

and subsequently exploited to generate an appropriate layout. Figure 3.9 depicts the resulting graph and
also a possible solution for the layout.

If a direct call relationship between two entities in the system does not exist, possible causes for log-
ical coupling are frequently dependencies on data-types or data-structures which are inherited from other
files. In our example, fap could be an include file providing some general definitions which are used
by fai1, fae, and fp1. The challenge for software evolution analysis is to determine the impact of such
dependencies onto the evolvability and to provide adequate feedback.

3.4.5 Experiment with feature fHttp

In this experiment we are interested how the Mozilla Application Suite will be clustered on the basis of
the LinLog model. To reveal the dependencies between clusters and to observe the building of clustered,
we selected all problem reports which are associated with one of the features. Thus, two files such as fa2
and fp3 are connected if they share at least one problem report. Using our example from Figure 3.9, the
problem reports pi154375 and paggsz1s cause two edges leading from f45 to fps.

Table 3.3 Details for logical coupling of clusters with involvement of feature fHttp in the Mozilla Appli-
cation Suite (excerpt). As observation period we used the years 1998-2002.

clusterid \ specific reports total reports

191 4 52

76 4 44
401 62 219
361 132 228

Since we are interested only in the results for the feature fHttp, we have identified those clusters which
have problem reports associated with this feature. Table 3.3 lists the result for some clusters where we found
problem reports with a relation to the selected feature. Basically two clusters are of interest. The first cluster
with the ¢d = 401 consists of 27 artifacts which are located below the sub-module netwerk/protocol/http.
This reflects a good encapsulation of functionality and a clear separation of concerns. In contrast to this,

50 CHAPTER 3. BUILDING A RELEASE HISTORY DATABASE

Figure 3.10 Detailed sketch of cluster 401 (upper left) and 361 (lower right).

1FA90R0Ne:

[§3157 Ve RsHtipTransaction.h
1423084 BWETR/ATlG

[ip{sreinsHipTransaction.cpp

A http/src/nsHttpChunkedDecoder.cpp
13 BB RE
/2293808 puestynrgriot X °P
1R IRt

TRResS RS

1#23091: hannel.cpp

[: tp! y.cpp

U hannel.idl

, e
oSE e -
#6947 extensions/c el

PSS RS BTERIRIRHER o

{48313 extensionsicpokie/nslGaokigService
110893 extensions/cookielnsCookieH T TPNIfy.cpp

1#23270:netwerk/streamconv/convertersinsHTTPCompressConv.h

142264 h
R B RSN ERASIEIS tService.ial

1#23419:netwerkltestserver/ScriptFile java
1#23056:netwerkiprotocol/http/src/nsHTTPChannel.h
14520,

IpAakE N
1#22632:netvetkiy;

\/http/src/nsHTTPCha

14#22658:netwerkibase/srcinsSocketTransport.cpp

B RSB RSB BH R ARG RN etData.dl

1#22608:netwerklbase/src/nsFileTransport.cpp

heutiss/nsAboutBlank.cpp
ATBR/nsFtpControlConnection.cpp

14227 DiskC op

3.5. RESUME 51

the second cluster (id = 361) consists of 68 files from the modules netwerk, extensions, and some from
xpcom, and embedding as well. Interesting is also the relationship between the two clusters. As depicted
in Figure 3.10 the clusters are clearly separated but have a number of connecting logical couplings. For
cluster id = 361 the file network/base/src/nsSocketTransport.cpp acts as “peer” for a number of files from
the other cluster which are located in a different sub-modules of the netwerk module.

3.5 Résumé

The Extraction, preparation, import, and validation of the required information from the various sources
took a considerable amount of time to obtain a Release History Database with sufficient data in respect to
quantity and quality. Though, some of the import steps are already automated, the manual determination of
information such as the mapping of software features onto source code or the inspection of problem report
information would have to be redone with other systems as well. Thus, a better integration of the various
information sources would ease the gain of information for evolutionary analyses.

With respect to the grouping process, the results are not surprising since we expected to find a higher
logical coupling within a module (adhesion) rather than between modules (stickiness). Thus, we have to
find a systematic approach to disclose the more interesting stickiness and to avoid the clutter caused by the
logical coupling within a module aka adhesion.

52

CHAPTER 3. BUILDING A RELEASE HISTORY DATABASE

Chapter 4

EvoZilla - Analyzing Evolving Systems

Large software system or families of related software products are complex and heterogeneous constructs.
With the increased computing power, large parts of a software system are coded in higher level languages
or provide extensive configuration mechanism via scripting languages. Changes affect therefore different
implementation technologies used in a software systems. A small change in a configuration file may
have strong impact on the overall system. Another relevant aspect in the longitudinal analysis of software
systems concerns the information flow between different parts of related products. The questions which
have to be answered are for instance the kind and distribution of changes from one system to another, the
distribution of effects with respect to modules or components, or the existence of evolutionary hot-spots.

Thus, we developed three analysis techniques focusing on different aspects of hot-spot mining in the
release history: EvoGraph is a systematic approach to identify relevant structural shortcomings based on
information obtained from the release history. The identified entities are also evaluated for their structural
stability and appearance of patterns in their longitudinal development; EvoTrace evaluates and compares
the changes in the runtime behavior between two versions of a software system on a quantitative-level;
EvoFamily exploits the commonalities in the release history of a family of related products and points out
the strong structural relation between source code entities and documentation as well.

All techniques use the same technological foundations as described in the previous chapter such as the
Release History Database or the grouping of related artifacts. Intermediary and final results are therefore
interchangeable and allow one the evaluation of the identified entities with respect to different evolutionary
properties.

4.1 EvoGraph

Structural analysis approaches frequently fall short in an adequate representation of information for lon-
gitudinal analysis. By compounding the two underlying information spaces in a single approach, the
comprehension about the interaction between evolving requirements and system development can be im-
proved significantly. We therefore use a lightweight approach based on release history data and source code
changes, which first selects entities with evolutionary outstanding characteristics and then indicates their
structural dependencies via commonly used source code entities. Our approach completes typical release
history mining and source code analysis approaches, therefore past re-structuring events, new, shifted, and
removed dependencies can be spotted easily. Furthermore, the EvoGraph approach combines the two infor-
mation spaces evolution and structure to point out and assess structural stability, recurring modifications,
or changes in the dependencies of the file-sets under inspection.

4.1.1 Approach

Our initial assumption about the characteristics of the cross-cutting change transactions in our Mozilla
case study was, that we would find co-changes which introduce a direct or indirect structural dependency

53

54 CHAPTER 4. EVOZILLA - ANALYZING EVOLVING SYSTEMS

between files having a high logical coupling. In contrast to this assumption, most of the co-changes con-
cerned changes of indirect dependencies such as a common ancestors in an inheritance hierarchy or com-
monly used data types. Their creation itself within a co-change was seldom to observe. Thus, the mining
approach has to take account for this observation.

EvoGraph is a systematic approach to identify structural shortcomings in large scale software primarily
based on release history and small source code deltas. Our approach exploits the change history and
source code information to obtain a coherent information space with historical co-change dependencies
and structural information required for the assessment of a system’s evolution. The underlying principles
can be described as follows.

We use logical coupling to identify relevant file-pairs for further exploration on the basis of their spatial
distribution. Then, in mining the longitudinal aspect of a files history, we build a structural change vector
describing all changed structural dependencies. Moreover, we also record information from files appearing
within the same co-change transaction. The benefit of considering also related files is the option to deduce
“change semantics” related information as well. For instance, a file appearing frequently in user interface
related co-change transactions could be an event handler for some GUI components. We therefore propose
the following five main steps for the realization of the EvoGraph approach:

1. file selection: as starting point of the analysis process, relevant source files have to be selected based
on data from the Release History Database. Here, relevant means files which exhibit an extraordinary
logical coupling with respect to cross-cutting change transactions. This processing step requires the
correlation hypothesis Hla and the traceability hypothesis HIb.

2. co-change visualization: the stickiness-view (depicted in Figure 5.9) generated from the selected
data set provides co-change information at a glance and supports the directed search for structural
shortcomings. A system engineer may select files from this view for a further detailed analysis, e.g.,
files which are connected with many “satellites” files. This visualization is base on the stickiness
filter hypothesis H2.

3. fact extraction: for the selected files in the preceding phase, the detailed change transaction informa-
tion is collected from the Release History Database and as result structural change vector are created
for every file within a transaction. For the fact extraction we rely on the source diff hypothesis H3.

4. mining: next, the structural change vectors are the input to the mining change transaction data phase.
Output is a description of the longitudinal development of structural dependencies of selected files.

5. visualization: finally, the structural dependencies with respected to their longitudinal development
are visualized in an electrocardiogram (ECG) style diagram. Patterns or anti-patterns are detectable
in this view as well.

In the following sections we briefly describe each of the above steps. The preparatory work and funda-
mentals are described in the earlier chapters: the hypotheses Hla, HI1b, H2, and H3 which the process is
relying upon are formulated and discussed in Chapter 1, background information about the building of our
Release History Database, and grouping of artifacts is discussed is in Chapter 3.

4.1.1.1 File selection

First, we determine a set of files which represent a defined set of the application’s functionality. Chapter 3
described the details how we used dynamic analysis to identify file-sets which implement certain features.
In our Mozilla case study, we use the basic browsing features of the software system. This approach reduces
the set of 30,000 candidate files to about 1,000 which are responsible for the system’s core function in terms
of the selected features.

Second, we identify those file-pairs which constitute a high module stickiness and potentially nega-
tively impact the system’s structural stability. Currently, we use an upper limit for the size of co-change
transactions to filter out “background noise”, e.g., copyright modifications frequently affecting hundreds
of files without having any effect on the code itself (see also Chapter 3). The limit depends on the system
under inspection and has to be manually determined by reviewing the recovered transactions.

Third, from this set of candidate file-pairs, relevant files are selected via the inspection of the path
which connects them. Motivation for the choice of a metric is their capability to reflect evolutionary and
structural properties for the visualization: (a) file-pairs which exhibit a strong logical coupling should be

4.1. EVOGRAPH 55

placed close together in the visualization; and (b) we are interested in coupled file-pairs which reside in
different modules.

The following metric selects only those file-pairs which have a path via the root node of the system
structure graph G(V, E) (see also Figure 1.2):

Cmax (4. 1)

<i%) i path contains the root node
wvi,vj = :
0 otherwise

File-pairs with weight w = 0 are not considered in the subsequent determination of co-changes. For all
other file-pairs, the weight w,, ., is the normalized value of the number of co-changes c for the file-pair v;
and v;. Whereas the normalization value ¢4, 1S the maximum number of equally weighted co-changes
found which match the selection criterion. Other metrics to determine file-sets, e.g., between files within
the same path of a sub-module hierarchy, can be used to assess the conditions on a local level. The metrics
definition also enables the assignment of different weights to different path lengths which impacts the
layout of the stickiness-view in the next phase. A different weighting function could be a time lense
emphasizing the more recent co-changes.

4.1.1.2 Co-change visualization - stickiness-view

To find starting points for further analyses, the so called stickiness-view enables the directed search for hot
spots in a system’s module structure. Based on the graph information obtained in the previous step, we
create a visualization for the stickiness of the resulting file-set. File-pairs with a high stickiness—logical
coupling crossing module boundaries—are placed closely together. Unrelated files are placed further apart.
As a result, the obtained information can be used by a system engineer to identify bad smells such as God-
classes.

We use a visual clustering tool based on an energy model (see Section 3.4) for the layout which provides
a more natural gravity layout. Edge weights are the previously determined values for w,, ,,. Figure 5.9
shows an example for the stickiness-view based on data from our Mozilla case study. The squares in the
view indicate the files and their size is an indicator for the logical coupling. Now, interesting hot-spots can
be selected on the basis of this view for further investigation. If a directed search for evolutionary hot-spots
is not required, the logical couplings are processed in order from the highest to the lowest number in the
next processing step.

4.1.1.3 Fact extraction from code changes

The objective of this step is the extraction of facts about possible structural dependencies. To retrieve the
required source code deltas we determine the respective revision number and its predecessor version by
examining the Release History Database. Next, with the revision number information the respective source
code deltas can be retrieved from the repository. They consist of different fragments and represent the
parts of the source file which has been modified. Since a full-fledged parser can not be used to parse the
fragments, we implemented island-parsers [106] for the different flavors of programming languages. They
recognize important constructs such as class declarations. Furthermore, they are able to handle incomplete
statements such as partial changes of control constructs or open comments.

Results of the parsing process are strings representing facts about the inserted or deleted code. Since
only the changed portions of the source code are considered for fact extraction, it is not always detectable
if a dependency has been removed completely. Unchanged portions of the source code may still maintain a
dependency. Such examples are “dangling” include files where the include directive has not been removed.
As a consequence, added or removed dependencies may not be accurately detectable. The following facts
are extracted:

* added provides: a new code sequence which provides some functionality to others, e.g., class, inter-

face or method declaration, has been detected;

* removed provides: opposite of the above, i.e., some declaration has been removed from the source

code;

* added depends-on: a new structural dependency, e.g., inheritance, method call etc., has been de-

tected;

56 CHAPTER 4. EVOZILLA - ANALYZING EVOLVING SYSTEMS

Figure 4.1 Vertical and horizontal mining.

horizontal mining vertical mining
A implements call to B

singular changes co—-change, e.g., data type

* removed depends-on: opposite of the above, i.e., a structural dependency has been removed from the
source code;

* added uses: a string which does not represent a provides or depends-on fact has been detected;
* removed uses: a string has been removed; and
* updated: a string appears in the added and removed section of the same source code transaction.

To distinguish frequently used strings such as function or variable names from rarely used strings, we use
a weighting scheme based on their overall appearance in all source code deltas. The assumption is, that
unique or specific strings of a class appear more rarely than common names such as the well-known C
function printf. From the list of extracted strings and their number of appearances we first compute the
arithmetic mean of all strings detected:
1 n
5= ; 8. 4.2)

Then for each string in the list we can compute its relevance

S; — S
- 4.3
T si+3 4.3)
yielding results in the range [+1.. — 1] whereas +1 is interpreted as irrelevant, i.e., string appears very

frequent, and —1 as relevant. The variable s; in the above formula denotes the number of appearances of
the respective string.

For every change transaction of a file, the extracted strings from the source code fragments are aggre-
gated into a structural change vector. These vectors are then used to identify structural dependencies within
a transaction. Another interpretation is the effect on the longitudinal development with changing depen-
dencies. The changes may lead to patterns which are an evidence for limited agility of the system with
respect to evolutionary changes. In this fact extraction step, changes which are applied to branches of the
source, are not considered. If these changes were relevant for the reference architecture, they would have
been merged into the main trunk of the revision tree anyway. Change transactions which affect branches,
can be identified easily via their revision numbers.

4.1.1.4 Mining of co-change transaction data

Many of the analysis approaches proposed so far observe the evolution of files with respect to co-changes or
observe the evolution of a files with respect to structural changes. However, we combine both approaches
to provide a holistic view on a system’s evolution (see Figure 4.1). This facilitates the integration of evo-
lutionary and structural analysis into a single approach. The existing separate approaches can be classified
as follows:

* to identify logically-coupled files and filter interesting file-pairs (vertical mining); and

* to find information which links timely offset changes of the respective files (horizontal mining).

4.1. EVOGRAPH 57

Figure 4.2 Example for the label-view in EvoGraph.

nsIProxyObjectManager
) nshnterfaceRequestor

Atital 1
NSAUIOLOCK

nspr
1Ei]

IIDILULGlfIIC
/Q ns|StringBundle

+al
ASvvindowvvaicner

d | bt
0
<
X

d
DIRO;
d

INets +MNial. o H
& nsiNetSupportDialogService
prmem

I1Praf
AsirFrel

¢

\/AiAA
PISVUOIUATT uy
pr Iug
prprf

Al
pr etdb

{
©)
9 QoI

@ OO

O

1ch \
K_/ |IDIbIIC\II|I'CI
nsReadableUtils

f \ HARI

v’ nNa1om™

nsIPrompt d =

|\
2001-02-10 2001-05-31 2001-09-15 2001-12-14 2002-06-06 2002~
18 119 1 20 v 212 I 22 1+ 23 v 24 | 25 v 26 v 27 | 28 1 29 1 30 | 31 1 321 33 | 34

il

We refer to vertical mining as the exploitation of co-changes when the files of interest have been part of
the same change transaction. We refer to vertical mining as the exploitation of co-changes when the files of
interest have been part of the same change transaction. Other change transactions such as singular changes
are usually not considered. The objectives are manifold and comprise the clustering of files, pointing out
structural shortcomings, or predicting source code changes. Approaches which fall into this category are
described in [27, 146, 149].

The focus of horizontal mining approach is the reconstruction of the longitudinal development of a sin-
gle file with respect to structural dependencies. Here, the exploitation of co-change properties is of minor
interest. Proposals for such approaches are in [94, 142, 143]. This mining approach can be best character-
ized by the extraction of metrics and structural information for every revision of a file and reasoning about
it on a per file basis.

A motivating example to combine both approaches is depicted in Figure 4.1. File B for instance
implements a function 3 which will be used later on from a function « in file A. The required change
transactions may happen independently of each other but in the correct order to maintain the integrity of
the source code. At some later point in time, a data type change requires the modification of the method
signature. Thus callee and caller have to be modified at the same time. This modification emerges then as
co-change transaction. In our approach, we use vertical mining to determine the logical coupling between
file-pairs. Based on facts obtained via horizontal mining, we search for evidence in the change history of
the selected file-pair to find the type of structural dependency and to model their longitudinal evolution. A
benefit of our approach is, that we use source code deltas for fact extraction. Thus, the minimum effort to
parse the code of all source code revisions is O(n). In the worst case, when the file is completely modified
in every revision, the effort can be approximated as O(nm), whereas n is the total length of the file and m
is the number of revisions.

4.1.1.5 Visualizing evolving dependencies

The purpose of the EvoGraph diagrams is the provision of visual information for uncovering change pat-
terns, spotting commonalities, monitoring of ongoing activities, and validating past re-engineering events.
Figure 4.2 and Figure 4.3 depicts the common symbols (one per line) and their respective changes (glyphs)
of the features fHttp and fHttps. For every source code change we build the tuple of structural change
vector and time which represents a change event. In EvoGraph the detected change events are classified
with respect to their information extraction method and display in two different (sub-)views:

e label-view: provides the more reliable information about structural dependencies and is based on the
depends-on and provides facts. An example for this view is depicted in Figure 4.2; and

58 CHAPTER 4. EVOZILLA - ANALYZING EVOLVING SYSTEMS

Figure 4.3 Example for the word-view in EvoGraph (symbol names not shown).

A v

A X \% C A

2 A A X \VJ

z =

X X X A X \V / X
a X AV g~ A b !

X e, v

B A fv

X v VA S b
§ A P Y VARLILES
2001-02-10 2001-05-31 2001-09-15 2001-12-14 2002-06-06 2002~
18 119 1 20 t 212 I 22 1 23 v 24 | 25 v 26 v 27 | 28 1 29 1 30 | 31 1 321 33| 34

* word-view: the uses and updated facts are the information basis for this diagram. Here, the strings
are only statistically weighted and they do not necessarily imply a real structural dependency, i.e.,
the same word can be used in different files for similar purposes (see Figure 4.3).

To depict the modification events with respect to the two categories we use colors and glyphs (see also
Figure 5.10 in Chapter 5). The color red (Hl) indicates change events of one file-set and the color blue
(mmm) indicates the events of the other set. The following glyphs indicate the different events recorded for
the common structural dependencies (one per line):

* in a source-code modification of a file a new provides has been detected, e.g., a class declaration or
interface definition, which is depicted via the glyph O (a);

* a removed provides has been detected [|. As a consequence, the interface, method or variable is no
longer usable by other entities of the software system (b);

* a new depends-on represents a reference onto something new, e.g., usage of class within another
declaration, has been added to the source code () (c);

e a removed depends-on reference has been detected [] (d);

¢ in a source-code modification a relevant new uses has been detect A (e);

¢ with the removed uses a word has been removed from source code v (f); and
* when a word has been updated the event is depicted as x (g).

Due to the aggregation of several modifications within one time-slot, some of the glyphs overlay and build
“new” glyph types, e.g., a word has been added and removed again within one time-slot 2t (h) or modified
in two files within the same time-slot X (i). Other change events may overlap as well and form different
glyphs. When it is possible to track a logical and timely connection between labels or words the respective
events are connected via a solid line, e.g., added and removed provides o—1 (a - b), to indicate the
continuous dependency.

The visualizations inform about major additions of dependencies (A), frequent changes or updates (B),
and also about removal of symbols (C). The following described analysis uses the visualized events to
identify patterns—and more important—anti-patterns in a system’s longitudinal development.

4.1.2 Analysis types

With the visualization of the selected files, the tracking of their evolution is basically completed. Next
follows a description of different analysis approaches which provide deeper insight into the evolutionary
processes of a software system. The analysis is part of the mining activities discussed earlier.

4.1. EVOGRAPH 59

4.1.2.1 Patterns and anti-patterns

With respect to the visualizations we define patterns and especially anti-patterns which point out structural
shortcomings of entities with curious longitudinal behavior such as growing or change rate. In [92] Lanza
defined a number of patterns which we will use subsequently. For some of the defined patterns such as
supernova, white dwarf, stagnant, or persistent we did not find an applicable scenario in our longitudinal
analysis of structural dependencies. Instead we introduce three new patterns: black-hole, skip-jack, and
daisy-chain. Especially the occurrence of anti-patterns may indicate bad design, lack of knowledge about
the actual architecture or other shortcomings such as inadequate consideration of system evolution. In all
cases such anti-patterns are costly and should not appear in well-design systems. While the first of the
following patterns refers to the stickiness-view, the other patterns refer the to the longitudinal view:

e the read giant or God-class binds a number of other files to its surroundings which build a group with
respect to their logical couplings. God-classes are detectable in the stickiness-view. The elements of
the cluster can be determined via their distance from the God-class which is in the center;

* in the black-hole pattern several structural dependencies are removed simultaneously from the source
code. After this successful re-structuring or code clean-up event new structural dependencies con-
cerning the removed dependencies should not reappear;

* the skip-jack anti-pattern appears after a re-structuring event were a structural dependency has been
removed. Different reasons may require that the same structural dependency has to be included
again;

e the day-fly anti-pattern indicates a structural dependency which is introduced and removed again in
the same time-slot or after a small number of revisions. It is basically the inverse of the skip-jack
anti-pattern. A day-fly can be detected via its short-lived existence of a few revisions. There are
no other usages before or after the day-fly associated with this dependency. Day-flies indicate sub-
optimal structural changes which had to be modified again at a later point in time causing extra effort
for modifications and testing;

* a pulsar anti-pattern characterizes the appearing and disappearing behavior of a dependency. This
pattern may indicate debugging activities, requirements and design problems, or unclarity about the
implementation of some functionality; and

¢ in the daisy-chain anti-pattern a structural dependency is first used by one file and later exclusively
used by a second file. This pattern indicates that the first implementation of a solution had some
drawbacks which had to be superseded by a more carefully designed one.

Examples of the EvoGraph visualizations and the detected patterns with respect to the Mozilla Application
Suite are provided in our case study (see Chapter 5).

4.1.2.2 Structure evaluation

Objective of the structural evaluation are the identification of the direct and indirect dependencies which
hamper a systems evolution. With the lightweight fact extraction process of EvoGraph based on file-level,
two basic analysis types can be implemented:

* commonality analysis: two files or two file-sets are analyzed for common strings in their longitudi-
nal development. Only symbols common to both sets are selected. This makes views of this type
interesting for dependencies analysis. All subsequent EvoGraph views and concrete results about
structural stability and evolutionary patterns are based on this analysis type.

* aggregation analysis: for a single file or a file-set all changes with respect to their longitudinal
development are depicted. Assuming that source code is basically added to file and seldom deleted,
the result is an aggregation of all the symbols used. A distinction between local and shared symbols
is not made, but the assessment of structural stability and the detection of evolutionary patterns is
also possible. This analysis type is not exploited in EvoGraph.

Besides the two main types described above, the analysis can be further divided with respect to the analyzed
artifacts. The analysis granularity relies basically on the natural unit of files, though other unit types would
be advantages especially for feature analysis.

60 CHAPTER 4. EVOZILLA - ANALYZING EVOLVING SYSTEMS

Figure 4.4 Schematic representation for extracted dependencies of files in a co-change transaction.

GUI Definition
Scripted GUI
(Application)
Scripting
*
§ ' IDL |
Base System N
File A (C/C++) File B (C/C++)
removed depends-on new or updated dependency
————— > _—

e file: two arbitrary files or file-sets are analyzed for their structural dependencies and evolutionary
patterns. In our approach we are interested in comparing those file-sets which were identified to
have a high logical couplings across module boundaries;

* module: as modules represent different file-sets, they can be analyzed easily. Since the number of
files can be high, a preselection of the more relevant candidates will be required to avoid clutter of
the resulting views; and

e feature: two sets of possible related features are analyzed for their interwovenness with respect to
their direct or shared structural dependencies. As result the identified structural entities such as
interfaces, methods, or variables provide clues about possible feature interactions.

On top of the proposed analysis types, further analyses can be implemented. Examples are the assessment
of structural stability, analyses with respect to the improvement of adhesion and reduction of stickiness.
Also prediction models can benefit. Providing an advice about resolving structural shortcomings is an asset
in planning future re-engineering activities. After success re-engineering, the appearance of evolutionary
patterns are indicators for possible unsuccessful attempts to resolve these conflicts.

4.1.2.3 Change type

Fine-grained change analysis offers another interesting property with respect to reasoning about longitu-
dinal changes and their causes. Within a limited range it is possible to derive change-type information—
similar to a change semantics—about the co-change transactions. We consider a change-type as the “se-
mantic” information obtained from file type analysis. For our purposes it is sufficient to analyze the suffix
of a file-name such as .idl (for component interface) or .xul (for user interface) to deduce the change-type.
As we analyze all files within co-change transactions we are able to characterize the “semantics” of the
transactions. A file frequently appearing in transactions with files related to user interface changes cer-
tainly plays a different role than a file appearing in transactions with files related to processor specific
assembly code.

Figure 4.4 depicts an example with a dispatcher file (File B) responsible for handling application events
(such as nsCSSFrameConstructor.cpp in our case study). Based on the co-change transactions it is possible,
for example, to deduce its involvement with GUI related changes. Though, File A is not directly invoked
from the scripted GUI, we possible could find co-changes with File B (vertical mining) in the release
history. For files appearing in such co-change transactions we may conclude that they change concerned

4.1. EVOGRAPH 61

Figure 4.5 Example for schematic representation of a file’s evolution with respect to change type events.

add
code added gui code build architecture
interfact? ch‘ange
T T 4 L ‘ L T T
| t
code removed
delete

functionality related to some visual representation. Via horizontal mining we are then able to identify the
actually affected structural dependencies.

Thus, we are aiming at combining the information obtained from the structural change vectors of a file
with the change-type information into a single evolution vector. The vector represents the information sub-
strate gathered from all change transactions and describes a file’s evolution also with respect to “semantic”
changes. For instance, the evolution vector could comprise the following information derived from the
file-name extensions mentioned previously:

e cross-platform change: the change transaction affected files which are specific to the targe hardware-
or software platforms. This may break the platform independence of the application and requires
extra testing effort;

e user interface: code for a feature or function has been added, modified or removed which implies
that code on different abstraction layers has been modified; Consequences are high testing effort,
inherent problems with feature interaction, or new bugs due the large code changes. The extra effort
for implementing a feature in a late project phase my increase by an order of magnitude [40];

* component interface: a component interface has been added, changed, or removed. Consequences
are changes of the component model of the application;

* build architecture: files were added or removed from the corresponding application build files also
known as makefiles. Consequences are new architectural dependencies (e.g., call, access, inheritance,
etc.) which should be reflected in source code changes as well;

e signature: replacement of a function or variable type or interface with a different one. Consequences
are large change transactions with many modifications scattered in the respective source files; and

* code added, changed, or removed: the change transaction introduced new source code or parts of the
source has been modified. Changes to public interfaces or the build architecture were not required.

These classification types add the change-type information together with the added or removed dependen-
cies to the structural change vector obtained from the fact extraction phase. The classification supports
the system engineer in reasoning about the impact “weight” of a co-change coupling on the structural
dependencies within in the system.

A file having many different change-types over a significant period of time may indicate a violation
of the separation of concerns. A certain percentage of user interface related changes, for instance, might
suggest to review the implementation of the Model-View-Controller (MVC) pattern [65]. Figure 4.5 depicts
a sketch of such an evolution vector.

4.1.3 Data connectivity

Important for the usability of an analysis approach is its integration with other analysis environments. Evo-
Graph and its visualizations is designed to run in standalone mode but results can be integrated into other
structural analysis approaches such as ArchView [111]. While EvoGraph analyzes the source code changes
of every revision and therefore all structural changes are tracked, in more structure related approaches usu-
ally only selected releases are analyzed. Considering frequently modified files which are modified ten times

62 CHAPTER 4. EVOZILLA - ANALYZING EVOLVING SYSTEMS

Figure 4.6 Integration of evolutionary results of EvoGraph with structural results from ArchView.
EvoGraph

Revision 151 1.52 1.53 1.54 1.55 1.56 1.57 1.58 1.59 1.60

Release 1!3 1.4 15 [t]

ArchView

per month on average or even more, then the arbitrary selected source code releases would make it difficult
to identify patterns in a file’s longitudinal development.

The integration of both approaches has to happen per file on the revision with the largest revision num-
ber having a timestamp lesser than the given release date. In properly maintained repositories, this infor-
mation is directly available via the tagged source code revisions. Figure 4.6 depicts how the fine-grained
analysis process of EvoGraph can be synchronized with the ArchView process. The synchronization is
required since EvoGraph uses revision-based information and ArchView for instance uses release-based
information derived from the complete source code packages.

Prerequisite for the synchronization is either that the revision numbers are known also for the ArchView
dataset or the revision numbers can be deduced from the recovered time-scale. Then, with the identified
synchronization points, a symbol on can be unambiguously located in the source code via the three-tuple:

SI = (file-name, revision-number, line-number). 4.4)

Our experience is, that especially with C/C++ code a number of differences in the notation of functions and
methods between different tools exist. The usage of the three-tuple is therefore simpler than the comparison
of method signatures as their representation may vary.

The benefit of intertwining both approaches is that complete structural analyses are computationally
expensive and therefore they can not be run on every single update. Such complete analyses are for in-
stance useful with the major releases of the software system. Once synchronized, our lightweight analysis
approach offers the opportunity to track all intermediary change events. Figure 4.6 depicts an example with
releases 1.4 and 1.5 as the basis for ArchView. The timely distance between releases to inspect depends
on a number of different factors such as development activities and should be chosen as required. A half
year distance is sufficient in most cases. Another scenario is the observation of all events which occur after
a detailed analysis of the last release. As depicted in Figure 4.6 with release 1.5 in our example as the
basis. This enables the extrapolation of the obtained structural fact base via ArchView and enriches it with
longitudinal information via ongoing monitoring. Via tracking of insertions and deletions of source code
lines the positions of the symbols can be tracked easily, even if no structural data about new symbols are
available. These new symbols with no structural counterpart have be integrated later into ArchView.

4.2 EvoTrace

In this section we describe the methodology used in our approach called EvoTrace to exploit program
execution traces for retrospective software evolution analysis.

Dynamic analyses based on execution traces are used in software testing, software performance anal-
ysis, distributed and parallel systems evaluation, and to some extent also in program comprehension and
re-engineering to facilitate the understanding about interactions between building blocks of a software sys-
tem such as modules. While in structural analysis dynamic information such as call graph information is
used to get a complete static picture of the actual implementation of a software system, execution traces
have not been exploited for detailed retrospective software evolution analysis.

4.2. EVOTRACE 63

Figure 4.7 Import and analysis process of EvoTrace.

invosequence

Module Info Sequences
Map Data (Mozilla 1.7)

G
Map Data (Mozilla 1.4)

Module Info (Further Analysis)
Artifact I Sequences

Sequenzing

Execution Trace (Mozilla 1.7)

Sequenzing

Artifact Info

Invosequence

Execution Trace (Mozilla 1.4)

=

e s ‘

Execution traces produced from instrumented code reflect a system’s actual implementation. This
information can be used to recover interaction patterns between different entities such as methods, files, or
modules. Some solutions for the detection of patterns and their visualization exist, but are limited to small
amounts of data and are incapable of comparing data from different versions of a large software system.

Our EvoTrace approach recovers module views which facilitate the comprehension of each module’s
evolution with respect to their effect on run-time data. The methodology allows us to track the longitudinal
changes of particular modules and present the findings in three different kinds of visualizations. For the
implementation of the EvoTrace approach within the EvoZilla framework we extended our Release History
Database with the invosequence table to accommodate also the execution traces. Linkage with the existing
entities in cvsitem enables the access of dynamic information from a structural analysis approach.

4.2.1 Approach

Most of the information recorded in execution traces is captured also by profiling information. Thus,
profiling information can be used to generate a call graph or to gain information about the invocation
frequency of each method. However, patterns of invocation are not recorded, i.e., it is not possible to
deduce how frequently a method C' was invoked as A — C or B — C.

As a further shortcoming, we identified the impossibility to determine how these invocations are dis-
tributed over the execution time, i.e., during which program execution phase the invocation patterns emerge.
Reason for the limited data recording capabilities of “traditional” profiling is the information explosion dur-
ing program execution and the impact on execution time if detailed data are gathered. Nevertheless, for a
significant number of software systems and their use cases, these limitations can be neglected if data can
be collected using specific test environments.

In contrast to a call graph analysis of a single release of a software system, in retrospective software
evolution analysis we are interested in the modifications applied to the software system which describe
the changes from one release to another. More specifically, we are interested in the occurrence of specific
invocation patterns between modules or files and their change when different releases of a software system
are compared. One challenge with dynamic data is its size: simple scenarios can result in very large
execution traces. Because of that, researchers have investigated compression techniques to cope with the
size challenge.

EvoTrace comprises four steps as depicted in Figure 4.7. The first two steps are already used in the
feature analysis, whereas the last two steps are specific to EvoTrace:

64 CHAPTER 4. EVOZILLA - ANALYZING EVOLVING SYSTEMS

Table 4.1 Representation of invocations in the Release History Database.

Name Size | Description

id 4 Unique ID for this event

callee 4 Text segment address of called method
caller 4 Call issuing address

type 1 Method enter e (call) or exit x (return)
threadid 1 ID of thread context

level 1 Invocation or recursion level

involibid 1 ID of software library

cvsitemid | 3 ID of artifact in Release History Database
invofuncid | 3 ID of invoked function

sourceline | 3 Source code line number

* instrumentation, trace- and map-data generation;
* import from execution traces;

* sequencing invocations between modules; and

e visualization.

While the first step is development platform dependent, the subsequent steps of EvoTrace use Perl, Java and
MySQL which are available for a number of OS platforms. Next, we describe the data representation and
import process based on our implementation of EvoTrace. Though, the process is tailored for our Linux
development environment, other operating systems can be used as well, provided that the required trace
information is available. Again, central element is the Release History Database.

4.2.1.1 Instrumentation, trace- and map-data generation

As noted by Hamou-Lhadj in [77] three methods exist to generate traces of method calls: insertion of
probes such as prints; modification of the runtime environment such as Java; and debugging to monitor
program execution. The first method is supported by the GNU compiler collection (GCC). Thus only
two functions—one for entering and one for exiting—must be implemented. Appropriate calls to these
functions are then generated by the compiler. After compiling and linking, the application can be tested.
For Mozilla we used a typical scenario in which a web page from our web server was loaded. To avoid
user interaction with the application, the running program is terminated via an external QUIT signal when
no more additional events are recorded.

Before the trace information can be used in the further analysis process, the recorded memory addresses
must be mapped onto method- and file-names. This is done with map data generated from the two GNU
tools 1dd and nm. The first tool, 1dd, generates a mapping of base addresses for the dynamic linked
libraries. These base addresses are required to determine the library for which a call was recorded. The
second tool, nm, lists symbols from object files with source file name and line number information. Both
outputs are written to a map file so the mapping information together with the trace data can be used in the
following import process.

4.2.1.2 Importing execution traces

Result of the import from the execution traces and map file data are two separate database tables contain-
ing the respective traces of each Mozilla release with linkage to existing artifacts in the Release History
Database. The import is divided into two phases and accomplished via a Perl script:

 read map file information and try to find corresponding artifacts in the Release History Database;
and

¢ read the execution trace information and add one record in the database for each event in the trace
file.

4.2. EVOTRACE 65

After some experiments with the trace data we decided to use the format depicted in Table 4.1. The field
sizes are specified in bytes. The trace data, generated during execution of the testee, are stored in the four
fields: callee, caller, type, and threadid. The remaining fields are evaluated during the import by the Perl
script:

* id: a unique identifier for each event assigned during data import;

* callee: the code address of the method invoked during program execution from caller;

* caller: this address determines the originating point of an invocation in the execution trace; While the
callee address has a direct mapping to linker addresses, the caller address maps to the code segment
between methods and thus is not directly usable. Instead, an application of the caller address lies in
the search of corresponding enter-exit pairs. These pairs can be identified unambiguously within a
thread context via the 3-tuple callee-, caller-address and invocation-level,

* type: each event in the database is marked either with *e’ for enter or "x’ for exit of a method;

* threadid: every event requires information about the corresponding thread context (otherwise traces
are intermixed);

e [evel: the invocation-level information is simply derived from the type-field by counting enters and
exits on a per-thread basis. This information is added to simplify database queries;

e involibid: the instrumented application may consist of several third-party libraries. The IDs have
to be considered insofar that it is required to distinguish application local calls from calls to the
third-party libraries;

e cysitemid: from the import of release history data into our Release History Database, a mapping
from source files to unique IDs already exists. With the symbol information from object files we
are able to map the callee-address to the corresponding entry in the Release History Database. This
information is required to assign the file information to modules;

e invofuncid: during the import the callee-addresses are mapped onto unique IDs which corresponds
with method signatures. These signatures are derived from the object list data provided by the fact
extraction tool; and

* sourceline: the source code line number of the invoked function denoted by callee-addresses.

After importing and linking relevant information, the invocation database is ready to serve queries.
In Section 5.6 we provide some examples for a quantitative evaluation. Next, we describe an analysis
algorithm for the detection of interactions between modules based on the invocation sequence data.

4.2.1.3 Sequencing

We focus on invocations between different modules. This reduces the amount of information to be dis-
played and characterizes the communication between modules. Consequently, we are interested in invo-
cation sequences S, S between modules M, , M}, and their methods or functions f,(), f5(), fc() such as
S1 = My fo(Mp.fo(); My.fo()) or So = M. fo(My.fo(Mp.fp())). Si exhibits two module switches
since the control flow always returns to M,. So exhibits only one module switch. These sequences are
derived from the recorded data using the fields type, cvsitemid and level. Since data are not rep-
resented as graph in the database, we need to traverse all invocations which is performed by a small Java
program. Figure 4.1 shows the (simplified) Java code which is used to detect the invocations between mod-
ules. To reveal the transitions between the different modules a data structure holds information about the
invoked modules. For each change of invocation-level, the event pairs (new event in trace and old event
on stack) are compared. A change is checked and recorded via the function save_diff module (o, n).
This function compares the module IDs and counts the transitions within the program flow. Transitions
within a method, i.e., on the same invocation-level, are recorded with the code in the else-branch. Here,
the topmost element of the stack is replaced with the new event. Then the two elements on the stack
are checked for different module IDs. While the if-statements check for invokes and returns such as
Me.fo(...My.foa();...) the last else branch detects a series of invocations such as Mp. f,() and M. f.()
in My.fo(.o.Mp.fo(); ... My f5,(); ..My fe(); ...). Every detected transition (i.e., their respective module
ID) is written to a separate database table. Next, input data for visualizations are generated from this
information.

66 CHAPTER 4. EVOZILLA - ANALYZING EVOLVING SYSTEMS

Listing 4.1 Java code for transition detection.

Event[] events = new EventfMAX_STACK];
events [0] = trace_data ();
int cntevent = 1;
while (more_trace_data ()) {
Event n = new Event(trace_data ());
Event o = events|[cntevent—1]; / get old event
if (n.level > o.level) {
save_diff_module (o,n);
events [cntevent++] = n; // save new event
}
else if (n.level <o.level) {
save_diff_module (o,n);
events[——cntevent—1] =n; // replace old event
}
else { // same invocation level
events [cntevent—1] =n; / replace old event
o = events [cntevent —2]; / get ‘‘new’’ old event
save_diff_modules (o,n);

}
}

4.2.1.4 Visualization

Since visualizations are appropriate means to recognize trends and to compare the results, we combine the
obtained information from the two versions of execution traces into different diagram types. One major
problem for visualization are the deficiencies of the often used Gantt charts for the presentation of 2 - 105
transitions between modules within the usual viewing range. Consequently, we need to reduce the amount
of information. A frequently used solution is the application of sub-sampling. Since no constraints on the
time-slots are given, we use twenty time-slots since it is most appropriate for use in the following three
diagrams.

* a Gantt chart provides a good view on different phases of the program execution. Different phases
such as system initialization or user interface related activities can be distinguished;

* the “matrix” view emphasizes the quantitative aspect of changes in invocations between modules.
The two communication directions between entities are depicted separately; and

* for a more detailed view on the interaction between modules we use Kiviat diagrams. In this view,
the communication between one module with respect to other modules is shown. A separate axis in
the diagram is used for each of the selected modules.

Based on this sub-sampling interval, we count the module transitions detected in the previous step and
generate the data sets automatically via a Perl script. The results are depicted in Figures 5.17, 5.18, and
5.19, respectively.

4.2.1.5 Optimizations

Next, we discuss some optimizations which we identified during the development of this approach and in
relevant literature.

e trace data compression: as pointed out by Hamou-Lhadj and Lethbridge [77], a limiting factor is the
problem of size explosion. Size reduction through pattern matching seems to be the most appropriate
solution to this problem. Deactivation of instrumentation—as sometimes proposed—for certain files
to reduce the amount of generated traces would require detailed knowledge about the software system
to inspect because otherwise important invocation transitions could be lost. Another drawback of the

4.3. EVOFAMILY 67

deactivation solution is the required effort to manually enable or disable instrumentation on a per
method basis. To reduce the amount of records the currently separate enter and exit records can be
merged since most of the information is redundant. Aside from the size reduction extra lookups to
find a corresponding invocation pair are avoided.

« standard database technologies support fast access to events of selected modules: if the analysis en-
vironment provides sufficient computing power and memory (= 3GHz Pentium 4, = 1GB), database
tables can be kept in memory. Thus the execution time for entries in ad hoc queries ranges from
fractions of a second to less than one minute depending on whether an index can be used to resolve
the query.

* support for detection of sequences and patterns: one field of future work is the detection of invocation
patterns. Detected patterns are a prerequisite for the implementation of a fast comparator function of
the version related trace data.

* handling multiple versions of execution trace data: in EvoTrace we use different database tables to
handle the execution traces originating from different version of the test program. Inclusion of the
version information into the tables would create a large amount of redundant information.

* linkage with existing release history information: this linkage is required to facilitate the evolutionary
and structural analysis process. The benefits of combining these processes have been addressed by
the EvoGraph approach which we discussed in the in the previous section.

4.3 EvoFamily

Unanticipated evolution of a single software system enforced through changing requirements can lead to
diversification and will result in different closely related products. These related products require a high
maintenance effort which could be avoided by building a platform for a product family from existing soft-
ware assets. To identify assets from related products which can be used as basis for a product family,
retrospective software evolution analysis can help to point out artifacts which exhibit a strong change de-
pendency. We therefore propose an approach called EvoTrace to identify and out-line possible information
flows between related systems. With respect to the existing infrastructure, the following information and
analysis steps have to be performed:

 extend our Release History Database for extracting change history information from a family of
related products and import relevant information into a set of linked Release History Databases;

e compare product variants on quantitative-level for a coarse assessment of the historical development
and assessment of the repository information for further research; and

e apply our approach for the visualization of logical coupling between features onto change dependen-
cies within a product.
Objective is to identification of commonalities between different variants of a product line. An exploitation
of these commonalities with respect to their temporal and spatial distribution provides an interesting view
on the past and possible future development of the product variants.

4.3.1 Approach

Most of the proposed mining approaches such as Zimmermann et al. [149] for mining the change history
or Collberg et al. [38] for visualizing a systems evolution are justified to analyze data from a single source
and would therefore require adaption to support data from multiple product variants. Analyzing a single
product variant implies a strict order on historical information such as check-ins into the source code
repositories. In contrast to this, multiple product variants can be roughly characterized through arbitrary
and asynchronous release dates, unanticipated information flow between variants, different development
goals and requirements. Given these constraints, with our EvoFamily approach we address the problem
of handling multiple, asynchronously maintained version control systems to identify change dependencies
through “alien” source code.

Artifacts with a strong change dependency often have architectural dependencies as research by Briand
et al. has shown [31, 32]. Another prevalent reason is duplicated code through copy’n paste. For the

68 CHAPTER 4. EVOZILLA - ANALYZING EVOLVING SYSTEMS

Figure 4.8 Process outline of EvoFamily: results are a the consolidated Release History Database and
visualizations depicting structural dependencies.

Consolidated DB

RHDB RHDB

NetBSD /
v%@ Visualization

OpenBSD

analysis of such change dependencies it would be beneficial if existing approaches and techniques can be
adapted and reused to study their impact onto the module structure.

To answer the research question of source code propagation within a product family we have adopted
our earlier approach for building the Release History Database and visualization of evolutionary informa-
tion of large-scale software. We therefore propose the process depicted in Figure 4.8. Since all data sources
must undergo the same preprocessing steps—Ilog file extraction, import into the Release History Database,
detection of change couplings—we use separate databases to store the results. For subsequent analysis
transactional data from the separate databases are filtered and merged into a new consolidated database
which is better suited for queries spanning multiple product variants. Currently we use modified variants
of existing queries to gather data from the three product databases to compare them on a quantitative level.
Another approach to compare system characteristics is by visually comparing graphs describing a systems
history. We use a module graph indicating the impact of change dependency and their distribution with
respect to different product variants onto the module structure of a single system.

In previous studies it was possible to use the release dates of the system under study as input for time-
scale information. Since the BSD variants are developed independently, an artificial, common time-scale
has to be created. This ensures comparability of the different system histories. Disadvantageous is that is
not possible to examine and compare the processes between the release dates, since the release intervals of
the different product variants are crosscut at arbitrary points. Therefore, we will use a fixed time-scale with
an interval of one month regardless of the actual release dates.

To detect and relate information flow between BSD variants we decided to use lexical search in the
change logs to find hints for information flow from other systems into the system under inspection. Alter-
natives to a pure lexical search are clone detection in source code, comparison of the structure of changes,
or advanced indexing and text analysis techniques.

In this approach we use information from the release history with respect to different keywords instead
of feature data. This information was reflected onto the module structure of the source code and visualized
to generate the high-level views of a software system. Independent from our research work Yamamoto et
al. investigated variants of the BSD system for similarities as well [144]. They mainly use CCFinder by
Kamiya et al. [84] to compute similarity metrics of the source code. In contrast to our work, their aim

4.3. EVOFAMILY 69

lies on the overall similarities between different products, rather than the type, amount and distribution of
information flow between the variants.

70

CHAPTER 4. EVOZILLA - ANALYZING EVOLVING SYSTEMS

Chapter 5

Case Studies

To demonstrate and evaluate our approach we applied the steps of our EvoZilla approach to the Mozilla
Application Suite. It is a large scale open source software project. The source code, the release history
data, and the problem report data are freely available on the Mozilla developers web-site. Primary objective
of this case study is to point out evolutionary hot-spots and their structural properties with respect to their
evolution.

5.1 About Mozilla

The Mozilla Application Suite forms large software development tool that is a blend of XML document
processing, scripting languages, and software objects. It is used to create interactive, user-focused applica-
tions. The architecture of Mozilla consists of the base system mainly written in C/C++ and—on a higher
abstract level—a number of scripts and user interface definitions tied to the base system. The sum of both
sub-systems represent the actual application. It can be understood as graphical web-shell interpreting a
large complex script building an Internet browser.

For selected releases we extracted some metrics to describe to Mozilla source code. Table 5.1 lists
some of the releases together with the number of source code files (*.h, *.cpp, and *.c) and the total lines
of C/C++ source code (LOC) per release. The time interval between each two subsequent releases is about
half a year. The table shows that the amount of source code is increasing from release to release. For
instance, the number of source files increased by 360 files or 606,509 LOCs from Mozilla release 0.92 to
1.7. An interesting peak in terms of number of files and lines of code is by release 1.4 with 11,585 source
files and 3,966,466 LOCs. Up to this release source code has been added permanently due to addition of
new features or extension of existing features. Then, from release 1.4 to 1.6 the amount of source code
decreased by 405 source code files. In particular, several *.c and *.cpp files have been removed or sourced
out to libraries. In the next release the source code again increased.

Thus, we can expect an interesting case study with a number of changes in the source code during the
first half of the project. In the subsequent time-interval a number of re-engineering events might be possible

Table 5.1 Mozilla releases with the number of files (NOF) and lines of code (LOC) metrics.

Release #h #.cpp #.c NOF LOC
0.92 4,695 3,847 1,600 10,142 3,306,122
0.97 4,824 389 1,635 10,355 3,518,124

1.0 5,258 3961 1,970 11,189 3,868,025
1.3a 5464 4,119 1,806 11,389 3,924,064
1.4 5,585 4,168 1,832 11,585 3,986,466
1.6 5473 4,161 1,546 11,180 3,835,173
1.7 5,662 4,278 1,562 11,502 3,912,631

71

72 CHAPTER 5. CASE STUDIES

to detect. Before we can start with the analysis, we need to prepare the Release History Database.

5.2 Modification reports

In this section we evaluate our Release History Database against the data from the Mozilla Application
Suite. Since the Mozilla project got a new focus in 2003 by establishing the Mozilla foundation, their lead
project at the time of writing is called Firefox. Therefore we decided to stick with the Mozilla Application
Suite and to update the Release History Database in 2005 with new modification- and problem reports. As
of the beginning of 2004, Mozilla can be characterized as large scale software system consisting of more
than 90 modules distributed over 2,500 directories, populated with more then 30,000 files and comprising
more than two million lines of C/C++ code. This is the result of more than 6 years active and ongoing
development.

From CVS and BugZilla we imported more than 490,000 and more than 250,000 records, respectively.
Additionally, more than 60,000 source code changes were downloaded and integrated into the Release
History Database to track the evolution of source code dependencies.

5.2.1 Evaluation of the Release History Database

Listing 5.1 File change history of selected files with number of modification reports and problem reports

(excerpt).
security/manager/pki/src/nsPKIModule.cpp
r 31 111 .1 2 . . # of MRs

1 P Y2 . . # of PRs

security/manager/pki/src/nsNSSDialogs.cpp
21 9 5 . 2 111 1 1 3 1 . . 13 3 . 1 # of MRs
11 2 4 .2 1 9 1 2 3 1 . . 12 3 .1 # of PRs

In this section we evaluate our approach according to import, time-scale, historical, and coupling as-
pects of Mozilla. The results are based on data available per December 14th, 2002.

At that time 36,662 artifacts and 433,833 modification reports were imported to the cvsitem and
cvsitemlog tables, respectively. From these artifacts, 23,540 were identified to have a bug report ID in
one of their associated modification reports. In total 158,491 references to bug reports were found which
resulted in a final number of 28,456 bug reports imported to the Release History Database. Thus, out of
the total number of 180,000 bug reports stored in BugZilla, we filtered a solid sample of roughly a sixth
of the full set. This sample exhibits an important characteristic for evolution analysis: they are referenced
by modification reports and can be linked to certain changes in particular files or logically-coupled files
indicating what was changed, what the result of the change was, and when the change happened.

5.2.1.1 Time scale

For a first analysis of evolutionary aspects, e.g., system growth or change rate, it is necessary to create
a time-scale based on an appropriate granularity [87]. In our semi-automatic approach we used the sym-
bolic names retrieved from the CVS log files, e.g., MOZILLA 1 0°'RELEASE, as indicators. During the
import process each occurrence of a symbolic name is counted and the total number together with the
most actual date of a modification report are stored in the Release History Database (see cvsalias). The
counting process considers symbolic names associated with the main trunk only, since they indicate the
affiliation to the core architecture. These values are then used as indicators for possible release dates.
A Java program selects entries by using a regular expression with groups to priorize the results, e.g.,
(MOZILLA .*RELEASE)*(.*BASE)*(.*RELEASE)*(.*)* , whereas only candidates with a high number
of “votes” are selected. Since the Mozilla project team has published new releases on a nearly monthly in-
terval, we also used a monthly interval for our further considerations. The results for our the reconstructed
release dates are listed in Chapter C.

5.2. MODIFICATION REPORTS 73

Listing 5.2 Problem report history.

S o o +
| bugidl|severity|short_desc

B fom B +
1169943 |blocker |Form submit buttons not working [embedding apps] |
110155	critical	Convert all arbitrary content <tree>s to <listbox>
97044	critical	PSM is passing null string to preferences @nsPrefBranch::QueryObserver
92475	critical	Need error msg for expired CRLs.

| 70595 |major |[Need to make nsIPrompt accessible to nsIChannelSecurityInfo object
[169932|normal |Replace wstring with AString in IDL
| 97667 |[normal InsIInterfaceRequestor.idl needs freezing

81257 |normal |Accepting Root CA- View and Policy buttons not working.

79153 |normal |No indication that a key is being generated.

|
|
|
| 74803 |normal |Should make global data const where possible

| 74436 |normal |PSM 2.0 needs to use WindowWatcher service instead of AppShell
|131393 |enhance |outliner content view should support icons from src attribute
| 44042]enhance |Wording on security-alert dialog is confusing

|

I
I
I
I
|
78012 |normal |Finish up the Certificate Viewer for PSM 2
I
I
|
I
31896 |enhance |lock icon distinguish between weak and strong encryption |

5.2.1.2 Release history

Based on the time-scale we can compute the release history for all artifacts in the Release History Database.
An artifact is marked when it first appears and the mark is updated every time the artifact is modified in
one of the time-slots. For example, the file nsPKIModule.cpp from 5.1 has been introduced in release 33,
modified in releases 34 trough 37, then again in 45 and 47, and finally in 53. This leads to the following
release sequence number: <33,34,35,36,37,45,47,53>. These sequence numbers are recorded and used in
the detection of logical coupling [62]. Another aspect of the release history are the number of modifications
and problem reports associated with every artifact and time-slot. The two example files, nsPKIModule.
cpp (109 lines) and nsNSSDialogs.cpp (747 lines), in 5.1 were introduced in release 33 (2001-02-10,
MOZILLA 0°'8 2001020916 'BASE) and remained in the main trunk until the latest release (2002-12-02,
MOZILLA 1°2°1 RELEASE). Although the first file has been modified less frequently and also has lesser
problem reports, the source — line/bugreport ratio is better for the second file (9.9 compared to 21),
which means that the code of the first file is more error-prone. To retrieve more detailed bug report related
information a simple SQL statement can be used, e.g., to list all bug reports for nsNSSDialogs.cpp:

Listing 5.3 Query for problem reports of file nsSNSSDialogs.cpp.

SELECT

b. bugreport,r. bug_severity ,r. short_desc
FROM

cvsitem i, cvsitemlog 1,

cvsitemlogbugreport b, bugreport r
WHERE i.id=l.cvsitem

AND l.id=b.cvsitemlog

AND b.bugreport=r.id

AND i. rcsfile REGEXP 'nsNSSDialogs.cpp’;

Besides a number of “normal” rated bug fixes (not all are shown in 5.2), one blocking problem (blocks
development and / or testing work), two critical problems (crashes, loss of data, severe memory leak), one
major problem (loss of function), and two requests for enhancement were assigned to this file.

5.2.1.3 System history

From the release history of every artifact the release history of the over-all system can be derived.

74 CHAPTER 5. CASE STUDIES

Figure 5.1 Spectrogram of changed files in Mozilla.

- 75%

— 50%

25%

0%

ﬁ 18/19 ﬁ 40/41 Time ©

Figure 5.1 depicts 56 releases of Mozilla as system history view, which shows an approximately linear
growing of the system. The rightmost bar is used for scaling and represents 100% or 34,847 artifacts. Label
“0” has been assigned to the leftmost release. Due to space limitations only releases with odd numbers are
labeled, and dashed lines indicate the boundary between an odd and an even labeled release. The coloring
in Figure 5.1 indicates that about 50% of the files have been modified within the last quarter of project
duration, even though only about 25% were introduced in this last period. In [64] this approach has been
applied on subsystem-level to compare growing, change rate and stability. Applied on system-level, it
allows to compare the evolution of different systems on a very high level, e.g., to compare code maturity.

5.2.1.4 Coupling

Another aspect of a large software system is that bug reports may not be seen in isolation and thought of
a problem concerning a single file. Moreover, files referenced by bug reports are logically-coupled with
each other either by interfaces they use, a common code base they were copied from, or features they
implement. Since modifications to fix one bug reported for a specific feature often require small changes in
several files, an artifact in the Release History Database can be considered to be coupled with other artifacts
through bug reports. The degree of coupling depends on the number of references to bug reports an artifact
of the Release History Database shares with other artifacts.

For instance, we selected all 33 bug reports of nsNSSDialogs.cpp and evaluated the number of artifacts
referenced by these reports. We found 456 different artifacts which were affected by the selected bug
reports. The topmost referenced files were nsNSSCertificate.cpp with 16 references, nsNSSComponent.cpp
with 13 references, and nsINSSDialogs.idl with 11 references. Not surprising, they all belong to the same
sub-module security/manager/pki. The first file from a different sub-module was nsPKCS12Blob.cpp from
security/manager/pki with 7 references. We also found a single problem report (see [6] for report 88,413)
with references to 373 different files. A change in an interface of a base class required the modification of
this large number of files. These relations between bugs can be used to build groups of reports which refer
to similar problems.

5.3. PROBLEM REPORTS 75

Table 5.2 Problem reports of BugZilla.

\ Status assigned closed reopend resolved
Resolution all / ref all / ref all / ref all / ref
undefined 7,016 /510 0/0 988 /173 0/0
duplicate 0/0 282175 0/0 13,855/ 66
fixed 0/0 333/63 0/0 14,806 /7,705
invalid 0/0 315/6 0/0 4,551/43
later 0/0 0/0 0/0 4/4
moved 0/0 0/0 0/0 24710
remind 0/0 3/0 0/0 1/1
won’t fix 0/0 92/1 0/0 1,823 /46
works for me 0/0 35972 0/0 9,765 /93

\ Status new unconfirmed undefined verified
Resolution all / ref all / ref all / ref all / ref
undefined 19,582 /415 3,348/ 16 1,318 /199 0/0
duplicate 0/0 0/0 0/0 41,648 / 487
fixed 0/0 0/0 0/0 36,620 / 18,940
invalid 0/0 0/0 0/0 9,116/ 113
later 0/0 0/0 0/0 6/5
moved 0/0 0/0 0/0 73/1
remind 0/0 0/0 0/0 5/5
won’t fix 0/0 0/0 0/0 3,123/69
works for me 0/0 0/0 0/0 15,569 /308

5.3 Problem reports

This section describes mainly the quantitative results of the import process. Objective is to gain an insight
into the reliableness of the extraction of problem report IDs from the modification reports. In the resulting
data-set we expect to find only some false positives, i.e., rejected problems or IDs which do not point to a
valid problem report.

5.3.1 Distribution of problem reports

The first test relates relates to the distribution of the identified problem reports with respect to the different
different classifications which are support by the problem tracking system. An important classification is
the fixed resolutions since it indicates that a reported problem has been identified as such and has been
solved as well.

Table 5.2 indicates that 91% of the referenced reports ref fall either into the group fixed/resolved (7,705)
or fixed/verified (18,940). The other categories are sparsely filled which may indicate a positive false de-
tection or incorrect tracking status of problem reports. If we compare this data with all reports downloaded
from the BugZilla database, we recognize that a large number of problem reports within the groups dupli-
cate, invalid, won't fix, and works for me has not been referenced. These results support our assumption
in two ways: firstly, only records about problem reports are made which have an effect on the CVS repos-
itory; and second, a significant number of the identified IDs is valid if we presume that duplicate, fixed,
etc. reports are equally distributed over the ordinary scale of report IDs, i.e., if IDs would be random in
modification reports the chances to pick a false or correct PR ID would be equal.

We now give quantitative results of the link validation method applied on the reconstructed links be-
tween modification and problem reports. In total 33,499 links have been reconstructed. Our link validation
method checked all these links and according the regular expression rated 27,835 links as high, 4,908 links
as medium, and 758 links as low. Investigating the patch information 9,379 of links rated high were vali-

76 CHAPTER 5. CASE STUDIES

Table 5.3 Products and problem reports.

fixed reports all reports
Product all found % all found %
Browser 35,520 20,396 57.42 | 129,889 22,208 17.10
Browser (locale) 2 2 100.00 2 2 100.00
BugZilla 1,630 9 0.55 4,564 26 0.57
CCK 459 7 1.53 688 11 1.60
Calendar 371 192 51.75 709 197 27.79
Camino 535 1 0.19 2,249 1 004
Chimera 87 86 98.85 96 95 98.96
Derivatives 1 0 0.00 23 1 435
Directory 189 93 49.21 380 103 27.11
Documentation 225 8 3.56 522 10 1.92
Grendel 9 0 0.00 41 0 0.00
JSS 82 4 488 122 4 3.28
MailNews 7,089 4,583 64.65| 29,112 4978 17.10
Mozilla (locale) 234 0 0.00 473 1 021
MozillaClassic 178 6 3.37 479 10 2.09
NSPR 445 371 83.37 713 399 55.96
NSS 839 517 61.62 1,388 546 39.34
PSM 862 413 47091 2,851 442 15.50
Phoenix 208 8 3.85 1,180 9 0.76
Rhino 115 0 0.00 179 1 0.56
Tech Evangelism 1,314 6 0.46 4,908 16 0.33
Webtools 239 1 042 617 2 032
mozilla.org 1,126 5 044 2,122 15 0.71

dated that is 33%. For the other two confidence categories we obtained similar values. 3,425 not validated
references face 1,483 validated in group medium. In group low the proportion is 496 to 260. Restricting
this comparison to *c, *.cpp, and *.h files does not reveal significant differences.

5.3.2 Products and problem reports

A summary overview about different products, the total number of problem reports and their validated
linkage with modification reports is depicted in Table 5.3. Results for reports having status fixed are listed
in the left column, whilst the right column labeled all reports lists the number of reports in the database
regardless of their status. In the most important category Browser we found 20,396 of 35,520 downloaded
reports which yields to a success rate of 57.42%. Most of the reports found are resolved as fixed and only a
minor part belong the different resolutions such as undefined or invalid. Interesting are also other product
categories such as Tech Evangelism, Webtools, or mozilla.org which may be used as indication for false
positive detections which is less than 1%. Our conclusions from the above data is: references to problem
reports are available in a sufficient quantity and quality to allow further analysis based on this data.

5.3.3 Correlation with modification reports

In the following we will refer to every instance of a pairwise modification using the term file-pair. This is in
contrast to logical coupling which denotes pairs of files commonly modified regardless of the modification
rate.

From the total set of 36,661 files we found about 4.26Mio file-pairs, 2.55Mio of them were without
associated PR — we call them unqualified coupled — and 1.89Mio file-pairs coupled via at least one PR.
The latter type is called qualified since PR data provide information which allows further reasoning about

5.3. PROBLEM REPORTS

77

Figure 5.2 Problem reports and coupling.

100 -
0
80 |- b
60 - P
X X*X’X\
40 |- SRR
0 ool e x XX | X ¥

Dec 1998

Dec 1999

Dec 2000

"unqualified” coupling ------

Dec 2001

total number of PRs

Dec 2002

"qualified" coupling -- - --

modifications. 1,337 files had no relationship with any other file fulfilling the selection criterion.

The distribution of unqualified coupling (maximum 87,639), qualified coupling (81,782) and the distri-
bution of problem reports (maximum 1,565) found for the whole Mozilla project are depicted in Figure 5.2.
The values are normalized against their respective maximum values. Whereas for the first 10 releases vir-
tually no couplings via problem reports are recorded, the number of qualified couplings increased and
followed for about 2 years the graph of unqualified couplings. We assume that the bug-tracking system
BugZilla was not available for the first releases of the Mozilla Application Suite.

From the run of the curves we deduce a strong dependency between problem reports and qualified
coupling. A y2-test we applied on the number of qualified and unqualified couplings did not support the
assumption that these types of coupling have any dependencies. Revealing such dependencies could be
beneficial for prediction models.

As an example for the distribution of the modification rate, we depict the their number for the year
2002 in Figure 5.4. The first column indicates the release dates whereas the consecutive columns indicate

Table 5.4 Distribution of file-pair modification rate in 2002.

Rate
Date 1 2 3 4 5 6 7 8 9 10 11 12 13 14 16 17
01.23 | 58,436 2,321 305 68 20 6 4 1 1
02.05 | 27,286 433 56 12 5
03.11 | 25,968 2,748 492 106 39 16 9 4 2 2 0 0 0 1 1
04.22 | 53,138 3274 1,309 529 880 125 63 46 14 8 4 3 2 0 0 1
05.31 | 40,925 39,539 7,272 710 431 60 3 0 1 1 2
06.06 5,655 87 2
07.23 | 31,560 2,882 1,577 176 29 15 4 6 1 1 1 1
08.05 3,768 481 84 19 2
09.12 | 63,867 8,278 2,376 421 92 42 7 33 9 8 2 1
10.17 | 17,462 1,233 262 67 20 10 1 0 1
11.05 4,843 154 12 3 1
12.12 | 22,750 1,324 663 63 43 36 2 2

78 CHAPTER 5. CASE STUDIES

the modification rate of file-pairs. For instance, the highest rate was in April where one file-pair has been
modified 17 times. Common to all 5 years of our observation period is the increase in the modification rate
during spring and autumn whereas the total number of file-pairs not necessarily increased. E.g., February
and March have about the same number of file-pairs but the modification rate for certain file-pairs is much
higher. This suggest that periods with higher programming/bug-fixing activities are during none-holiday
seasons such as March or September.

5.3.4 Coupling distribution

To get a better overview about the coupling between the two modules we created a high-level view of the
structure of content — in lower left area — and layout — in the upper right area. In Figure 5.3 each graph
summarizes the inter- and intra-coupling over a one year period except for graph 5.3(a) in which two years
are depicted. To obtain a more compact representation we shifted data from sub-directories containing
less than 125 entries to the next higher level until sufficient data has been aggregated. The colored edges
between nodes indicated the type of logical coupling:

 green edges indicate that no problem reports for the majority of logically-coupled files were found;
* red edges indicate that for a majority of logically-coupled files problem reports were found; and
* blue edges indicate that the number is about equal (we refer to this edge type as unbiased).

Since virtually no problem reports were recorded for the first two years, the type of logical coupling is
clearly biased towards unqualified coupling. As mentioned in our third experiment, the sub-module, i.e.,
directory, content/xul has been added later to the project. This can be the reason for the large number of
qualified edges connecting content/xul with other nodes in graph (see Figure 5.3(a)).

If we compare the 4 graphs from the top/left to the bottom/right we recognize that the type of logical
coupling changes from unqualified, over unbiased to qualified. This trend is also supported by the distri-
bution of problem reports and logical coupling depicted in Figure 5.2. There the number of unqualified
coupling drops in the middle of 2001 (see Figure 5.3(c)) to a very low rate, whereas the number remains
on a high level until the end of 2002 (see Figure 5.3(d)).

5.4 Feature analysis

Feature analysis builds the foundation for a detailed structural analysis. The resulting file-sets of this
analysis are the input to our EvoGraph approach in the subsequent section. Following, the first step in
feature analysis is the determination of an appropriate mapping of the abstract concept of features onto
concrete realizations.

5.4.1 Feature extraction
5.4.1.1 Profiling implementation

Prerequisite for creation of profile data is the existence of an executable program with profiling support
enabled. But the way to obtain a usable version was paved with pitfalls. For most of the compiling and
testing we used two machines: a Pentium 4, 2GHz 512MB, RedHat 8.0 (gcc-3.2-7, libc-2.2.93) for most
of the work and a Pentium II, 333MHz, 320MB, SuSE 8.1 (gcc-3.2, libc-2.2.5) & SuSE 6.2 (egcs-2.91.66,
libc-2.1.1). One barrier in building older versions of Mozilla was the finding of a working compiler/library
combination (see Table 5.5).

This problem was introduced by changes in various header files. The fastest and simplest solution
to solve this problem was to install a Linux distribution shipped around the time the pertaining Mozilla
package was released.

A none obvious problem was the inability of the GNU glibc to handle large amounts of profile infor-
mation. A problem, it was finally fixed at the end of August 2002 (problem report http://bugs.gnu.org/
cgi-bin/gnatsweb.pl), in the GNU glibc library, originally reported by http://mail.gnu.org/archive/html/
bug-glibc/2001-07/msg00130.html in July 2001, causes that data are not written to disk when a program
with a large number of routines is executed (a table was improperly restricted to 64K entries). This was the

5.4. FEATURE ANALYSIS

79

Figure 5.3 Pair change coupling between content and layout.

~— unqualified ~—— unbiased —— qualified
Q‘|mages A lemages .
. o bugs . pbugs
qframeset -] o frameset -)
\ \‘fTabIe_O marvin . ‘O’I?.l?l.‘%_o marvin
ob ;

ST

.o printer

(a) 1998-1999 (b) 2000
images images
4 . o bugs R . o bugs
o frameset q frameset,”
\ “ylable _marvin ; “slable_ marvin
o bugs o o bugs ¢ © .
‘ /_Oprlnter
Q _____
W
V. i
=
O
(c) 2001 (d) 2002
Table 5.5 Mozilla and OS version.
Product Profiling Build Run
Mozilla 1.3a gee/glibc RedHat 8.0 RedHat 8.0
Phoenix 0.5 gee/glibc RedHat 8.0 RedHat 8.0
Mozilla 0.9.2 gce/glibc SuSE 6.2 RedHat 8.0

Mozilla < 0.9.2 | other SuSE 6.2

RedHat 8.0

80 CHAPTER 5. CASE STUDIES

Table 5.6 Scenario definitions and features.

Scenario Description Feature Fill style ID Files
sNull Mozilla start / blank window / stop fCore L] 00 705
sTC-HTTP TrustCenter.de via HTTP fHttp 01 28
sTC-HTTPS TrustCenter.de via SSL/HTTP fHttps 02 6
sTC-File read TrustCenter.de from file - - -
sXML XML Base fXml = 09 65
sMathML mathematics in Web pages fMathML 4 08 13
sAbout “about:” protocol fAbout N 10 3
sfBlank read blank html page fHtml % 03 76
shBlank blank html page via HTTP - - -
- - flmage = 04 3
sChromeGIF chrome://global/content/logo.gif flmageGIF Il 07

sPNG image: Portable Network Graphics flmagePNG E53 05 10
sJPG image: Joint Photographic Experts Group | flmageJPG 06 16

reason why the statically linked versions of Mozilla produced only profile data when running on RedHat
8.0 (see 5.5) but not SuSE 8.1.

Another unexpected problem was the impossibility to obtain complete call graph data when libraries
were dynamically linked into the system. Prior to Mozilla release 0.9.2 static linking was not possible,
only building an executable based on shared libraries was supported, which in turn causes problems with
profiling since the GNU C/C++ runtime library writes the results to a fixed file location. This has two
drawbacks: first, function calls which originate from outside the scope of a library can not be traced;
second, only profile data of a single library can be produced.

A solution we evaluated for early Mozilla versions was source code instrumentation using printf{) state-
ments. The necessary modifications in the source code, several thousand methods have to be instrumented,
were done by an architecture recovery tool we developed for finding patterns in source code [113]. The
modified version of this tool is able to find complex patterns, i.e., patterns which cannot be specified using
pure regular expressions, and to replace or insert code sequences similar to UNIX’s sed or awk. Due to
time limitations (human resources) we were not able to specify all patterns required for detecting all types
of function and method headers. But the results were promising and we would like to further explore this
method.

5.4.1.2 Feature extraction (scenario definition)

The goal of the feature extraction process is to gain the necessary information to map the abstract concept
of features onto a concrete set of files which implement a certain feature. To extract the required feature
data we applied the software reconnaissance technique [139, 140] within our Linux (RedHat 8.0 & SuSE
8.1) development environment. GNU tools [8] have been used successfully in [47] to extract feature data.

First, we created a single statically linked version of Mozilla with profiling support enabled. From
several test-runs where the defined scenarios (see Table 5.6) were executed, we created the call graph
information using the GNU profiler. The call graph information was used to retrieve all functions and
methods visited during the execution of a single scenario. Since our analysis process works on the file-
level, we mapped function and method names onto a higher level of abstraction. In the next step, “feature
data” were extracted from file name mappings using set operations. For example, the fXml feature was
extracted by the following expression (see also Figure 5.4):

fXml(sMathML N sXML)\ (sNull UsTC-HTTP UsPNG U sfBlank U shBlank U sChromeGIF)

The names in the above expression represent the set of files extracted in the previous steps from the executed
scenarios. Table 5.6 also lists the names assigned to the features, the fill styles which are used for their

5.4. FEATURE ANALYSIS 81

Table 5.7 Total number of logical couplings between features.

Feature Period
Feature 01 02 03 04 05 06 07 08 09 10 | <2000 2000 2001 2002 | Total
fHttp 0 20 10 7 0 2 2 0 7 4 24 63 155 129 371
fHttps 0 2 1 0 0 0 0 2 0 0 1 69 61 131
fHtml 0 6 0 1 46 16 29 1 87 116 140 122 465
flmage 0 0 15 5 0 3 2 5 5 54 31 95
flmagePNG 0 0 0 0 0 0 0 0 3 5 8
flmageJPG 0 0 0 0 0 1 0 22 11 34
flmageGIF 0 17 36 0 15 61 75 38 189
fMathML 0 67 0 2 9 32 72 115
fXml 0 1 7 34 105 110 256
fAbout 0 2 1 2 1 6

visualization, and the number of files retrieved. Finally, we imported the filename-information into the
Release History Database along with the release number of the program from which the data were retrieved.
In our case it was Mozilla version /.3a with the official freeze date 2002-12-10 (even though we found one
modification report with a time-stamp 2002-12-12).

5.4.1.3 Qualification and selection of problem reports

The distribution for all types of reports referenced from modification reports for the fCore feature (repre-
sented as white bars in the background) and the other extracted features (represented by different fill styles)
is depicted in Figure 5.5 using a bi-monthly time-scale. Since the number of reports for the core is a mag-
nitude larger than the number of reports for the other features, we used a scale ratio of 10 : 1 for the boxes.
The largest number of reports found for a single period was 3,628 ending on 2000-06-05. To visualize the
fCore-to-feature ratio, the bottom of the white bars are shaded according to the ratio calculated.

It can be seen from the number of fixed problem reports for the features, that periods with less activities
are during the summer time and at the end of each year. Thus we decided to use one year as time-frame in
the visualization of feature dependencies in Figure 5.6.

5.4.2 Visualizing feature evolution

Visualization is a useful technique to present complex feature interrelationships. We use two different types
of views to facilitate the understanding of evolutionary changes in large software systems:

e the feature-view focuses on the problem report based coupling between the selected features; and

e the project-view depicts the reflection of problem reports onto the directory structure of the project-
tree.

5.4.2.1 Feature view: projecting problem reports onto features

This view focuses on the visualization of features and their dependencies via problem reports. The degree
of coupling between two features is represented by edges whereas the number of references (i.e., the edge
weight) from problem reports to files is expressed as line-width. Each line indicates the coupling of files
through problem reports on the feature-level rather than the file-level. In fact, all entities contributing to a
feature are drawn on the same position, which supports the impression that features are compared.

To reduce the amount of visible edges—one problem report can affect several items of a feature—and
to visualize only important edges, we use the following criteria: (1) the edge weight between nodes is set to
200—if the actual weight is greater—to reduce the impact of outliers, i.e., dominant edges (upper bound);
and (2) an edge must have at least 10% of the weight of the highest weighted edge to be visible (lower
bound). As a consequence, every edge in Figures 5.6.b, 5.6.c and 5.6.d represent at least 20 references.
Since the maximum number of references in Figure 5.6.a is 168, the smallest visible edges represent 17
references. To scale down from the large number of references we used the logarithm function to determine
the visual line-width. The actual number of problem reports that features have in common and the total

CHAPTER 5. CASE STUDIES

82

Figure 5.4 Set operations to extract feature data from the generated runtime information.

fCore = (sNullNsTC-HTTP NsTC-HTTPS NsTC-File N sMathML NsAbout NsPNG NsXML N sJPG NstBlank N shBlank N sChromeGIF)
fHttp = (sTC-HTTP NnsMathML NsPNG NsXMLNsJPG)\ (sNull UsTC-File UsAbout U sfBlank U sChromeGIF)
fHttps = (sTC-HTTPS)\(sNullUsTC-HTTP UsTC-File UsMathML UsAbout UsPNG UsXML UsJPG UsfBlank U shBlank U sChromeGIF)
fHtml = (sTC-HTTP NsTC-HTTPS NsTC-FileNsAbout N sfBlank NshBlank)\ (sNull)
fimage = (sSPNGNsJPG)\ (sNullUsTC-HTTP UsTC-HTTPS UsTC-File UsAbout U sfBlank U shBlank)
flmagePNG = (sPNG)\ (sNull UsJPG UsfBlank U shBlank)
flmageJPG = (sJPG)\ (sNull UsPNG U sfBlank U shBlank)
flmageGIF = (sAbout NsChromeGIF NsTC-HTTP NsTC-HTTPS)\ (sNull U sfBlank U shBlank)
fMathML = (sMathML)\ (sNullUsTC-HTTP UsTC-HTTPS UsTC-File UsAbout UsPNG UsXML UsJPG UsfBlank U shBlank UsChromeGIF)
fXml = (sMathML NsXML)\ (sNull UsTC-HTTP UsPNG U sfBlank U shBlank U sChromeGIF)

fAbout = (sAbout)\ (sNullUsTC-HTTP UsTC-HTTPS UsTC-File UsMathML UsPNG UsXML UsJPG UsfBlank U shBlank)

5.4. FEATURE ANALYSIS

Figure 5.5 Distribution of problem reports fixed for core and selected features.

}
A RARIARAARIKARRR AL
B

FATATATATATATATAATAY,

[Rl
VNN
/ [11

NN Wl
m— L
N i .
— p—
¥ 71NN TR
NS
NN | R
Q
SN Y
0| >
ﬂ 0’0\/
: ,190 /Qq
NN E@@E, o
r S Qq;i*
& o
SIS S
& x
——.
NN =)
| 9 &,»
/7
\i_& [@%Q '&;f/o
/
s o
N P
= = 3] % % B qu(b 'f,b
T o8-S 8EEREE Y &
%UIIX§<I§§§§ ¥
EOPNERUNNEDR Fss)”

84 CHAPTER 5. CASE STUDIES

Figure 5.6 Dependencies between features reflected by large problem reports.

1001/Http 1009/Xml P1001/Http
1002/Https
) p
1003/Html 1003/Html
P
1004/Image 1004/Image
P 9 P 9
(a) 1999 (b) 2000

1005/ImagePNG 1005/ImagePNG
P g @ g

(c) 2001 (d) 2002

number of problem reports for every feature can be found in Table 5.7. Due to the small number of files—
which means a small number of problem reports—we identified for the features fimageGIF, flmage, and
fAbout and the threshold for references, almost no coupling is depicted even though some references do
exist. If a feature is not shown in one of the figures, we could not find any problem report for the specified
period or the threshold was not reached. An isolated feature indicates only “local” problem reports but no
references to other features.

Figure 5.6 depicts the results for the observation periods 1999, 2000, 2001, and 2002, in which features
are aligned on a circle and visualized according to the fill style given in Table 5.6. From 1998 till 1999—the
result is depicted in Figure 5.6.a—we found virtually no coupling between features. The result changed
in the subsequent observation periods not dramatically but constantly. In Figure 5.6.b the situation for
2000 is depicted and indicates that the focus shifted from Http to other features such as fHtml, fXml, and
fMathML.

In 2001, the situation changed substantially and is depicted in Figure 5.6.c. The partially connected
graph has turned into an almost fully connected graph and the number of reported and fixed problems have
more than doubled (from 290 to 657). Except for feature flmagePNG, all features are affected by system-
wide changes! In 2002 (see Figure 5.6.d) the situation slightly improved since the number of reported
problems dropped to 580.

As a result, this kind of visualization can be used to point out phases of architectural deterioration on
the basis of feature dependencies. Our window of observation for every figure was one year but that can
be changed according to the given data set of the particular system under study. Such visualizations can be
used (a) to assess the point of time when some restructuring or reengineering activities should be started
and (b) to estimate the likely amount of resources to be required for changing particular features and/or

5.4. FEATURE ANALYSIS 85

system parts.

5.4.2.2 Project view: generating the visualizations

Input data for Xgvis and Xfig used for visualization are generated by a Java program. This program accepts
some arguments which allow the user to control the data selection and generation process (date-range, fea-
tures, problem report severity). A critical step in the data generation process is the selection of parameters
for the weights since this has a direct impact on the final layout. We used a ratio of > 20 : 1 for project-tree
edges and problem report edges. This scheme gives more emphasis on the directory structure than to con-
nections introduced by problem reports. In a first phase of the data generation process, the objects of the
project tree are assigned to their respective nodes of the graph. The minimum child size (minchild) specifies
which nodes remain expanded or will be collapsed. Collapsing means that objects from the sub-tree are
moved up to the next higher level until the size criterion is met, but not higher than the first level below the
“ROOT” node. Since the complete Mozilla project tree consists of more than 2,500 subdirectories, we had
to simplify the resulting graph and so we cut off unreferenced directories. In a second step it is possible to
move fewer referenced nodes to a higher level to obtain a more compact representation. The effect on the
graph is that unreferenced leafs are suppressed, though they contain enough objects to meet the minchild
criterion.

In Figures 5.7 and 5.8 the project directory tree is shown as gray nodes connected by black dashed
lines. The root node is labeled “ROOT” and the features are indicated by filled in boxes according to the
fill styles given in Table 5.6. Coupling between nodes as result of common problem reports are indicated
by gray lines. Thicker lines and a darker coloring means that the number of problem reports that two nodes
have in common is higher. Since the optimization algorithm tries to place connected nodes close to each
other, stronger dependencies can be spotted easily.

One marginal problem is the limited layout area in the two dimensional solution space: all nodes must
be placed at least somewhere within a single plane and the placement of nodes after the optimization is
only indicative within a certain radius. Naturally, this radius depends on the total number of nodes. By
zooming-in, it is possible to provide a better picture of otherwise overlaid areas. An n-dimensional solution
space could yield better results but it is very difficult to visualize. In general, the layout after optimization is
one possible solution. It also does not necessarily mean that a global minimum for the given distances has
been achieved. Xgvis supports up to 12 dimensions, which would yield better results for the optimization
step, if, for example, more features were used; but then the results are difficult to visualize.

5.4.2.3 Results: how features fHttp, fHttps, and fHtml relate

The three features fHttp, fHttps, and fHtml are depicted in Figure 5.7. As raw data we selected all
problem reports for these features with the exception of problem reports classified as enhancements from
the start of the project until the freeze date. Parameters, which influenced the project tree node selection
process, were minchild = 10 (the number of artifacts, i.e. files in a subtree) and compact = 1 (the number
of problem report referenced by a node).

For the optimization process, we weighted the edges of the project tree with 20 (this gives more em-
phasis on the project structure), whereas an edge introduced through a single problem report was weighted
with 1. The factors £ = 0.2 and 0o = 0.2 for the weight function were used to emphasize the spreading
between nodes for visualization purposes.

The overall amount of problem reports detected for a node is indicated via the diameter of a node and
features “hosted” by a node are attached as boxes. Easy to recognize is the placement of nodes belonging
to the fHtml feature on the right side, and fHttp, fHttps on the opposite side of Figure 5.7. Interesting
are the nodes netwerk/base, netwerk/protocol/http, and security/manager/ssl since they are coupled via
90 problem reports for base — http and 40 problem reports for each of the other two edges. This indicates
a high degree of coupling between the features fHttp and fHttps.

Another interesting aspect is the spreading of the fHtml feature over 10 different nodes. Modifications
may be hard to track since several files in different directories contribute to a single feature. Remarkable are
the two nodes content/base and layout/html/base, since they are coupled via 35 problem reports although
only 4 and 3 files are located in their respective directories.

86 CHAPTER 5. CASE STUDIES

Figure 5.7 Relation of features fHttp, fHttps, and fHtml via problem reports.

proxy
=

@? src @base

' base ;
cache 5 ! @) :
sdieKet _—]
% 7 : Y. ”, d html
o profocol Voo ; A
S - : ase
ftp e AN gprcom ofontent . -
T petwerk &Y layout
T ot
o “\-Q;”lt!\; B
, -\\@jlwbrk
security /.
%}?Sl o yd extensions de
Qedltor
o manager 3
IS @mork
‘cookie AR
. §) libeditor,
oot)

= @) @) txmgr

As a result, Figure 5.7 shows strong change dependencies for the involved features across different
directories and points to architectural deterioration distilled from the evolution data:

 dependencies across branches of the project tree may indicate that there exist dependencies such as
invocation, access, inheritance, or association;

* frequently reported problems concerning certain source code locations of features can point to im-
plementation or design problems;

» features spread across the project tree may indicate the involvement of large amounts of the code
base for their realization and thus the impact of modifications can be difficult to predict.

5.4.2.4 Results: how all features relate with the core

The core feature and all other investigated features are depicted in Figure 5.8 on a coarse-grained level
(edges that represent less than 5 references are omitted). For this configuration we selected all reports
which were rated major or critical. We also set the minimum sub-tree size to 250 (minchild) entities and
the minimum number of problem report references to 50 (compact). This resulted in a graph with 37 nodes
and 315 edges induced by problem reports. By changing the values for minchild and compact it is possible
to generate an arbitrarily detailed graph of the whole project. It is intuitive that the most critical subsystems
in Mozilla are connected in the visualization, which is also supported by our findings.

The nodes with the highest density in severe problem reports are content (with 608 references), layout/
html (444), layout/xul/base (223), and layout (212). Another interesting aspect is the spreading of edges.
In total 343 connections between nodes are depicted. If we select only those edges representing > 10
references, then we can find the following ranking: node content with 19 edges, layout/html 10, docshell 9,

5.4. FEATURE ANALYSIS 87

Figure 5.8 Relation of core and features via problem reports.

] core gsrc @src

Hitp |

Https Q\?(\u
2 xm s RN
MathMI ;

About \ geolitor E? widget

Html)
= Image
il ImageGIF browser
£2] ImagePNG m)
& ImageJPG :

’
[

,
,
,
,
! ,
, .
¥ /
!
htmlpar
! ’ 7
! ’ ’
S
S
.

view

'

db

plegin
7

—---.__, expat

7

@cofﬁbonents

Luriloader.”| .
ﬂ) 1 > > mailnews

T

string

| * N

grgtocor"' B : ?
°,‘embedding ./ profile _
m) gﬂD gsecunty

dom 5, layout/xul/base, netwerk and uriloader with 4 edges each. The other nodes have 3 or less edges
with such a weight. In total 23 nodes share edges with other nodes with > 10 references but 19 of them
are connected with content. This confirms the exceptional position of content which is also indicated by
the 6 different features located there. As a result, pictures such as Figure 5.8 allow an analyst to draw
conclusions as follows:

 nodes with frequent changes appear larger than others and can be spotted easily;

* unstable parts of a system such as content are located near the center of the graph and they are highly
coupled with other nodes;

« features which have a common code base are attached to particular nodes and placed close to each
other (e.g., fMathML and fXml); and

* specific feature sets (e.g., the flmage feature) that are scattered over several nodes can be easily
spotted (e.g., nodes jpeg, modules, layout/html, content).

As a consequence, locations of intensive change history and scattering of features point to software parts
that should be considered for further investigation in terms of eliminating high complexity or architectural
deterioration.

After identification of such hot spots, architectural analysis tools [44, 51, 86] can be applied for a
directed search of those code elements which are responsible for logical coupling. As example, we inspect
frequently modified file pairs via manual analysis of modification reports, source code deltas, and call
graph information. Table 5.8 lists some of the topmost modified file-pairs of the two directories content

88 CHAPTER 5. CASE STUDIES

Table 5.8 Frequently modified file pairs (subset).

P M | Directory content Directory layout

50 27 | events/src/nsEventStateManager.cpp html/base/src/nsPresShell.cpp

49 32 | xul/document/src/nsXULDocument.cpp html/base/src/nsPresShell.cpp

46 11 | base/src/nsDocumentViewer.cpp html/base/ src/nsPresShell.cpp

38 21 | xul/document/src/nsXULDocument.cpp html/style/src/nsCSSFrameConstructor/cpp
25 12 | xul/document/src/nsXULDocument.h html/base/src/nsPresShell.cpp

23 13 | xul/content/src/nsXULElement.cpp html/base/src/nsPresShell.cpp

21 8 | xul/content/src/nsXULElement.h html/style/src/nsCSSFrameConstructor.cpp

and layout. Column “P” lists the number of modification reports with associated problem reports and
column “M” lists the number of modification reports without associated problem reports. As the table
indicates we can expect to find a strong relationship between event management (key, mouse, focus, etc.)
located in directory event, the user interface components in xul (XML User Interface Language), and the
visualization of HTML-content in html.

First, we show the dependency between nsEventStateManager.cpp (5,384 source lines) and nsPresShell.
cpp (7,961 source lines) as listed in the first row of Table 5.8. Since both files were frequently and pair-
wise modified, we can expect to find some evidence in one of the source code deltas from CVS. In revision
1.302 of nsEventStateManager.cpp a call to function FindContentForShell() has been added as new code
segment. The corresponding delta of nsPresShell.cpp (revision 3.462) reveals that the function has been
introduced with this revision. Thus, we have found a new call relationship between these two files.

Second, we investigated revision 1.122 of nsXULElement.h (673 source lines) and revision 1.766 of
nsCSSFrameConstructor.cpp (14,330 source lines). An object type was modified; this modification—
usually numerous files have to be modified if a type is changed—is also reflected in the number of af-
fected files: 71 files in directory content, 23 in layout, 4 in extensions, and 2 in xpfe. From the source
code deltas it is not possible to find a direct relationship, since only those source lines were modified
where the data type was used in a declaration. An inspection of the call graph information from the fea-
ture extraction process reveals that the method ArtributeChanged() of nsCSSFrameConstructor.cpp calls
GetMappedAttributelmpact() of nsXULElement.cpp (5,444 source lines). The include file nsXULElement.h
declares this method which takes an argument of the modified type.

5.5 Structural analysis with EvoGraph

After studying the evolution and dependencies of features on a system-wide global level, we now apply the
EvoGraph approach onto the previously used dataset to identify those entities which are the causes for the
evolutionary dependencies. Furthermore, the evolution of the structural dependencies is tracked down to
method- and variable-level. New to our Release History Database are therefore the source code changes
which we had to download from the Mozilla CVS repository to supplement our data-set. For this analysis
we use three arbitrary file-sets which we selected from the following stickiness-view (see Figure 5.9). Two
additional file-sets demonstrate the approach on feature and cross-language level.

5.5.1 File selection and co-change visualization

The features determining our file-set basically cover the applications web-browsing functionality such as
loading and displaying a web-page, XML and MathML content, navigation etc. We obtained about 1000
files with 80 of them having a stickiness, i.e., cross-cutting co-change transactions, of more than 30. Fig-
ure 5.9 depicts these files whereas the size of the squares indicates the number of detected co-changes. As
already identified in earlier research as complex files [112, 114], the most interesting files from the evolu-
tionary perspective nsCSSFrameConstructor.cpp, nsPresShell.cpp, nsGlobalWindow.cpp are re-appearing
as the evolutionary hot-spots. In contrast to earlier research, here we focus on the evolutionary properties
caused by structural dependencies. The three beforehand mentioned files are depicted as the largest squares

89

5.5. STRUCTURAL ANALYSIS WITH EVOGRAPH

Figure 5.9 Stickiness view: Topmost coupled files with respect to co-changes traversing the root-node of

the module tree. Larger squares indicate files with a high logical coupling with other files.

ddoiesiedsu

._go.v____wﬂ__wﬂcoo._shzw:;; “
|

¢s

spomgat|
wm_:n%_f

Hom
Japeo|l

_.. el
juay

=

oy
mvmo:t_wcw
wiaiiodl
oy uop
/ ajdxl
/
ddo mopuip[eqojosu |\

ddoruawnao@nxsu

ddog1anend
ddoa|qejuswa|3su
ddoriaziuayo JNLHSU

onyold

9|14 / 10ejiuyY
AKouapuadap abueyos-09

~ ddorjjaygsaidsu

wm_:uo-

Hr_wur.

ddo seBeuepyaieigiuangsu
ddo-awel4nus|ysu
So>-
ULl
1N0A

So>.

il
So>.

So>-

10058080

Jo)pe
no;
weyiodl wowdill W
i So>.
s wardil
EoEc., wajudol
ddorsdoidssosu
ddouonerepagssosu

ddo1ebeuepybuipuigsu

dda i0jonisuogawel4ssosu

1S

ddo193yselfISSSO TN LHSU
ddorjuswa|geaiyixa | JNLHSU
Yjuswe|3INXsu
ddoBuipuigigxsu

yronigelfigsu

ddolasiedsSosu
ddo-ojuisse|oNOQasu

ddo-apoNa|nysu
ddorao1nag1gxsu
ddojonnigalfigsu

CHAPTER 5. CASE STUDIES

as graph (a) shows the provides and depends-on facts. Graph (b) is the word-view shows dependencies

Figure 5.10 Commonalities between nsXULDocument.cpp and nsPresShell.cpp. The label-view depicted
with respect to uses uses facts.

90

j
doQueryElementat a x v
Syleshectapplec
&—f -
PR x v x
A v v
& x
I v x v €}
x
o z
©
B u _ .a..lv.
A >
x ke
M —
E || D :
a v
: g s
2 —~
x v v
% & X v =)
[Y v
A x v v
= R
X x | g
LI
x v v
s b X v v a x
2 3 x x v v 2 8
A X v 2 a
oG < x *
1999-03-17 2995-05-24 1999-08-17 1999-12-19 2000-04-11 2000-10-05 2001-02-10 2001-08-15 21 2002-06-0 2002-08-05 aodoz-21 2003-06-12
tarto ot 2 3 et s o6 8 + 9 1710 011 1 12 13 14 1 15 T16 117 1 18 [oa 20 ' 21 t2a 25 1 26 1 27 29 ' 30 31 7321 33 "3¢ 1 35 1 3 (37 i 3 ! 39 [Var a2 a3 v oaa 0 oas 0
w
Presshellcpp
-
€} o =
e 5 g =
<] 5 r—
o O
€ — =
o g s
=
—H £1
h_ H
5] = =
a— = i 0
© =
) —H
=
€]
g 3
=) (5]
a1 2
nsiDOVEwent = = I~
f
priog Ie) = -
SIDOMXULDocument
& UZQ/ i — S
nsIDOMDocument () = =]
Sele
—
] £1 U =
I — 0
I y =y T £1
= (H
H |
ImS)
=D =
8
/ o]
Iuy}
b =
g/ =
- / 5 5
I
st s = 5] =
1999-03-17 1999-05-2 1999-08-17 999-12-19 009-0¢-11 000-10-05 001-02-10 001-05-31 001-09-15 2001-12-14 002-05-06 2002-08-05 200 2 2003-06-12 00g-10-15 2004-01-16
Vo PR PO TR0 PR PRV s PR e PR PR PETR o PRTR w0 PETR e PETR 6 M vae PR PR s PR e PRTE e

uL
Presshell.cpp

5.5. STRUCTURAL ANALYSIS WITH EVOGRAPH 91

indicating a high degree of stickiness. They are surrounded each by a number of other files represented as
smaller squares sticking to the larger ones.

In the course of this case study we have also inspected the dependencies between the features fHttp
and fHttps which build an additional set of files to the already 80 selected files.

5.5.2 Heuristics for Fact Extraction

Next, we provide an overview of the file types which are considered as information sources and the method
how this information is retrieved from the selected files.

Interface definition files: a major element of Mozilla’s architecture is the component model called
Cross-Platform Component Object Model (XPCOM). The publicly accessible interface definitions are
stored in .idl files which can be parsed easily. From these files we can retrieve the following facts: (a)
forward declarations of interfaces which are required by an interface. This is a depends-on relationship and
defines an inheritance relationship or parameter type in a method signature; and (b) interface declarations
which are recorded as provides fact.

JavaScript files: the JavaScript code is used to connect the GUI defined in XML User Interface Lan-
guage (XUL) with the implementation code via component interfaces. XPCOM calls can be detected eas-
ily via regular expressions such as “. «*Components.interfaces\. (\w+) .*” whereas “ (\w+)”
matches the name of the interface.

C/C++ source code: due to the limited contextual information which is provided by source code deltas,
the parsing of the C/C++ files must compensate this fact. One limitation is that relationship types (inher-
itance, method call, variable access, etc.) are currently not extracted. Only strings which represent iden-
tifiers in the program code are extracted. Since we focus on the structural impact of a change transaction
rather than the exact meaning of a source code change we can omit such details. For our analysis we rely
on information which can be extracted easily from the available deltas:

I

e comments are removed. Since some comment lines do not start with “//” or “/+” we use the
following heuristics to remove possible comment lines: each line containing a sequence of word-
characters and white spaces is filtered from the input stream. In our implementation we use the
following regular expression: “. *\w+\s+\w+\s+\w+. "

e acommon practice to introduce new forward declarations is the application of #include pre-processor
directive. Their detection is straight forward and the detected keywords are added to the depends-on
vector;

e a new class definition is detected via the keyword class. The sequence following the keyword is
recorded; and

e the remaining words are collected and used to identify possible commonalities or dependency rela-
tionships.

Currently, string matching is used to find corresponding relationships within vectors of extracted facts;
namespaces are currently not supported. Furthermore, to overcome the limitations of an exact string match-
ing approach, we utilize similarity metrics such as edit-distances (aka Levenshtein distance). This allows us
the association of identifiers with file names if the naming was not consistent and minor naming variations
have to be compensated.

5.5.3 Findings

We have found about 47,000 change entries belonging to 1,742 different change transaction for the selected
observation period. Since we are interested only in those transactions which have an impact on the main
trunk of the revision tree, we have to sort out those which affect branches only. This reduces the usable
number of transactions by about 370 change transactions. The next section discusses the details about the
extracted adhesion and stickiness.

92 CHAPTER 5. CASE STUDIES

Table 5.9 Excerpt of the top ranked logically-coupled files with respect to adhesion (A) and stickiness (S).

LC | Module File Module File #
A layout nsBlockFrame.cpp layout nsBlockReflowState.cpp 278
A mailnews nslmapMailFolder.cpp mailnews nslmapProtocol.cpp 226
A content nsDocument.cpp content nsXULDocument.cpp 212
A xpfe navigator.js xpfe navigator.xul 140
S content nsEventStateManager.cpp layout nsPresShell.cpp 97
S content nsXULDocument.cpp layout nsPresShell.cpp 87
S content nsXULDocument.cpp dom nsGlobalWindow.cpp 84
S content nsCSSParser.cpp layout nsCSSFrameConstructor.cpp 81
S content nsGenericHTMLElement.cpp | layout nsPresShell.cpp 81
S content nsEventStateManager.cpp layout nsMenuFrame.cpp 35

5.5.3.1 Comparison of adhesion and stickiness

As already pointed out the adhesion should be higher than the stickiness. Table 5.9 depicts the conditions
in the case study for arbitrary files—.# files are not considered here—with respect to their logical coupling.
Some characteristics of files with a high adhesion is that they have also a certain commonality in their
names indicating a structural relationship. Besides the large number of .cpp files, we found also a pair
of user interface files which indicates the close structural relationship between function (navigator.js) and
layout (navigator.xul). At the lower end with the lesser logical coupling are the relevant file-pairs stemming
from different modules having a high stickiness. A threat to validity of the Release History Database are
inconsistencies in the release history of the Mozilla Application Suite due to duplicated files. One file with
a high stickiness is nsChromeRegistry.cpp which existed until release 1.7 in the modules chrome and rdf
as well which leads to a false positive result. In our case study we have only actually used files since we
exploit the run-time information to determine the respective file-sets.

5.5.3.2 Quantitative evaluation

Based on the results of step 4—mining of change transaction data—we analyze the tendency of added and
removed depends-on facts depicted in the label-view. We use the two indicated file-sets S1 and S2 and an
arbitrary pair of files with a high number of co-changes, in our case nsXULDocument.cpp and PresShell.cpp
(in the following referred to as S3). Every set is divided into two subsets 4 and p. The actual division of
files is depicted in Figure 5.9. For every subset the individual number of added and removed dependencies
are denoted as d, and d,., respectively. Similarly, their cumulated values are denoted as D, and D,,
respectively.
To assess the structural stability we use two metrics. The first metric defined as

s (5.1)

measures the survival rate of the aggregated structural changes. It yields a result in the range [—1.. + 1].
A negative result means a decreasing, a result around 0 would indicate periods of stagnation or without
structural progress, and a positive result an increasing number of structural dependencies. The second
metric is used to capture the quantitative aspect of the changes. We use

_ (atdy)
"= .+ D)) 2

5.5. STRUCTURAL ANALYSIS WITH EVOGRAPH 93

to estimate the fraction of structural changes for a given subset of files and assessment interval. This metric
is in the range of [0..1].

Since the overall time-scale is based on a monthly release interval, we divide the time-scale for this
evaluation in the middle, which is after time-slot 25 (or release 0.9.6) yielding two time-intervals for as-
sessment denoted as 1°¢/2 and 2"%/2 respectively (see Table 5.10). For interval 2"%/2 we expect that the
development process stabilizes and therefore we should find lesser structural changes since the planned
release 1.0 is only a few time-slots away.

15t/2: interesting for the three sets S1, S2, and S3 is the significant difference in the survival rate of
structural changes s1. While for S1 we have a rate of more than 70%, it drops for S2 to about 50%, and is
more divergent with 40% and 63% respectively for file-set S3. Considering the last two file-sets, 50% of
the structural dependencies introduced were irrelevant and did not survive the first assessment interval. To
make things even worse, about 75% (sum for both subsets) of the structural dependencies ¢; are introduced
during this period. This implies that already in the middle of the project’s lifetime time 38% of the structural
changes were only temporary and had no permanent effect on the final product.

27d/2- Tn the second assessment interval, some stabilization was to expect which is also confirmed via
the lower quantitative aspect of g» which is in the range of 8% to 18%. A surprising result for S3 is the
negative value for s with a high g2 which means that a significant number of dependencies are removed
again indicating a re-structuring event.

Figure 5.11 Comparison of the structural stability.

014

0.1

To compare the structural stability of the three file-sets, we compute the survival rate

_ (da - dr)
Uy, = (Do + D, (5.3)

of the structural changes per time-slot ¢,; The result depicted in Figure 5.11 indicates a turbulent devel-
opment phase from time-slot 6 to 29 (shaded area). While for S2 and S3 some remarkable re-structuring
events are detectable (negative values), there are virtually no such events for S1. Interesting to see is also an
almost inverse correlation between S2 and S3. While structural elements are added to S2, S3 is stable or re-
structured; and inversely, while S2 is stable or re-restructured, elements to S3 are added. This may indicate
the existence of daisy-chain change patterns. Actually, in time-slot 40 we found the nsIServiceManager
interface which has been removed from one file of S3 and added to S2 in the same time-slot.

CHAPTER 5. CASE STUDIES

94

Table 5.10 Structural survival rate of selected file pairs. Set determines the file-set, SS is the respective

subset and I the assessment interval.

word label

U provides depends-on uses U provides depends-on
Set [SS [1 da, dr, s gi | da; dr, s ¢ | day dr, si qi do;, dr s ¢i | day dr; si qi
S1 A |l 42 8 2 0.60 0.5 5 1 0.67 0.13 | 110 52 036 053 | 11 0 0 0.00 000 | 163 20 078 0.53
2 18 4 0 1.00 0.2 5 1 0.67 0.13 30 9 054 0.3 0 5 1 1.00 1.00 33 31 0.03 0.18
B |1 44 0 2 -1.00 0.1 16 9 028 054 63 17 058 0.26 2 0 0 0.00 0.00 57 8 0.75 0.19
2 16 3 1 0.50 0.2 6 3 033 0.20 16 7 039 0.08 0 2 0 0.00 0.00 21 15 0.17 0.10
> 120 15 5 0.50 1.0 32 14 039 1.00 | 219 85 044 1.00 | 20 1 0 1.00 1.00 | 274 74 057 1.00
S2 A |1 753 7 3 040 031 12 2071 035 | 442 277 023 0.65 1 0 0 0.00 0.00 23 8 0.48 049
2 38 1 0 1.00 0.03 5 2 043 0.18 34 67 -033 0.09 0 0 0 0.00 0.00 4 1 0.60 0.08
B | 1 109 14 2 075 050 8 3 0.45 028 | 155 35 0.63 0.17 4 3 0 1.00 1.00 17 5 0.55 035
2 52 3 2 020 0.16 4 4 0.00 0.20 19 69 -0.57 0.08 5 0 0 0.00 0.00 2 3 -020 0.08
> 952 25 7 056 1.00 29 11 045 1.00 | 650 448 0.18 1.00 | 10 3 0 1.00 1.00 46 17 0.46 1.00
S3 A |1 22 6 2 050 053 5 3 025 035 30 24 011 043 | 17 0 0 0.00 0.00 56 24 040 043
5 0 3 -1.00 020 1 3 -050 0.17 1 6 -0.71 0.06 0 0 0 0.00 0.00 5 24 -0.66 0.15
B 22 2 1 033 0.20 8 2 060 043 37 27 0.16 0.0 5 1 0 1.00 1.00 52 12 063 034
3 1 0 1.00 0.07 1 0 1.00 0.04 1 1 0.00 0.02 0 0 0 0.00 0.00 5 10 -0.33 0.08
> 52 9 6 020 1.00 15 8 0.30 1.00 69 58 0.09 1.00 | 23 1 0 1.00 1.00 | 118 70 026 1.00
S4 a |1 48 3 0 1.00 0.13 13 3 0.63 0.36 44 13 054 023 5 1 0 1.00 1.00 75 9 079 0.36
2 24 1 3 -050 0.17 6 13 -0.37 042 26 42 -024 027 | 16 0 0 0.00 0.00 28 60 -036 0.38
B |1 73 9 2 064 048 5 0 1.00 0.11 46 15 0.51 024 5 0 0 0.00 0.00 36 6 071 0.18
2 24 3 2 020 0.22 3 2 020 0.11 29 34 -008 0.25 0 0 0 0.00 0.00 16 3 0.68 0.08
> 169 16 7 020 1.00 15 8 0.30 1.00 69 58 009 1.00 | 26 1 0 1.00 1.00 | 155 78 033 1.00
S5 A |1 823 - - - - - - - - | 323 273 045 045 - - - - - - - - -
2 96 - - - - - - - - 53 38 016 0.07 - - - - - - - - -
B |1 332 - - - - - - - - | 311 188 037 037 - - - - - - - - -
2 71 - - - - - - - - 88 58 021 0.11 - - - - - - - - -
> 1,332 - - - - - - - - | 775 557 0.16 1.00 - - - - - - - - -

5.5. STRUCTURAL ANALYSIS WITH EVOGRAPH 95

Figure 5.12 Comparison of the cumulated values for the structural stability.

1-

0.754

5.5.3.3 Cumulated data

Figure 5.12 confirms the trend of the overdue re-structuring event for S1. We found 208 events (cumulated
added and removed) depends-on dependencies which dropped to 200 at the end of the observation period.
Since several dependencies may be added or removed during one transaction, the number of events does not
accurately reflect the actual number of shared symbols. Particularly, a symbol may be introduced several
times using different change transactions and later removed using a single transaction. In the “added”
case the symbol is counted several times, in the “removed” case the symbols is then counted only once.
Consequently, it primarily reflects the number of independent change transactions required to modify the
system rather than the actual number of symbols.

For set S2 the absolute numbers are much smaller with 32 and 29 respectively but also reflect the
absence of an effective re-structuring event. In file-set S3 we have a maximum of 73 which dropped after
an effective re-structuring event down to 48. The reason for its asymmetry with respect to the 50% mark
is that one subset can introduce more symbols than the other subset. From the graph in Figure 5.12 can
be seen, that all selected file-sets reached after an approximately linear growth from the project begin their
maximum in time-slot 28 which is about at release 0.9.7.

5.5.3.4 Qualitative evaluation

Following we provide our interpretation about the structural dependencies extracted from the source code
changes with respect to the three selected file-sets.

Set S1: the visualization for S1 confirms roughly the growing number of structural dependencies over
the whole project duration without any major re-structuring events or phases of stabilization. On a coarse
level, three phases can be distinguished: (1) before time-slot 21 the development showed a continuously
increasing trend in structural dependencies; (2) from 21 to 26 a number of new interfaces were added
to the system causing also a day-fly (Bug 104336); (3) lesser activities of added and removed interfaces.
Since this part of the system mainly indicates a growing trend in all structural aspects, it confirms our
God-class hypothesis about nsCSSFrameConstructor.cpp. This can be also underpinned via the follow-
ing quote from the Mozilla web page', which indicates that the authors were aware about architectural

Ywww.mozilla.org/ roadmap/ roadmap-02-Apr-2003.html [June 2006]

96 CHAPTER 5. CASE STUDIES

shortcomings: “Gecko® needs to support emerging standards [...] without everyone having to hack into
nsCSSFrameConstructor.cpp. It should be possible [...] to avoid an explosion of new C++ code and
rendering object bloat.” A solution has not been proposed until version 1.7 of the Mozilla Applica-
tion Suite. In version 1.8 they have “corrected” the problem by moving the file in the repository from
layout/html/style/src to layout/base. The file itself has grown between these to version by another 500
source lines and has now a total of 13,885 source lines. Another example for the instability of architecture
is the introduction of nsIRuleNode (Bug 78695) in time-slot 22 and its removal in time-slot 26. These
events are classified as day-fly anti-pattern having an affect on nsCSSFrameConstructor.cpp and the other
files of the selected file-set S1. According to the problem report (Bug 104336) the fix was due to some
performance issues introduced with the component nsIRuleNode in time-slot 22. The applied fix in time-
slot 26 caused the introduction of the file nsRuleNode which was used instead to avoid the overhead of the
component model.

Set S2: in this file-set we compare nsHTMLContentSink.cpp against the other files of this set. Interest-
ing in this set is the high number of uses facts which are related to HTML code parsing causing the high
number of changes basically in the files from htmlparser. These structural dependencies were removed
in time-slots 41 and 45, respectively, first from hrmlparser (S2 4) and then from nsHTMLContentSink.cpp
(S2p).

Set S3: for the third third file-set we used one file-pair nsXULDocument.cpp (S34) from the sub-
module content/xul/document and nsPresShell.cpp (S3p) from the sub-module layout/html/base. The
most frequent co-change types we detected were code and signature changes followed by build architecture,
component interface and user interface changes. The resulting diagram is depicted in Figure 5.10 (some
dependencies are omitted due to space limitations) with the following interesting change events:

* (A) indicates the provision of nsPresShell.cpp and its usage by the second file nsXULDocument.cpp

which has to be interpreted as a direct structural dependency;

 (B) shows a major re-structuring event since many labels (upper diagram) and words (lower diagram)
were removed at the same time;

e (C) is indicative in the word-view and shows some removals and updates;

* (D) marks another global re-structuring event which had also had a system-wide effect on many
other files;

* (E) and (F) mark two interesting events with respect to the daisy-chain pattern. Both dependencies
were first used by nsXULDocument.cpp and then by nsIPresShell.cpp:;

* (G) indicates a pulsar for the dependency nsIDOMXULDocument which may point out test-code or
doubt about the overall architecture.

e (H) skipjack after re-structuring (nsContentUtils, nslParser).

Set S4: this pair of file-sets comprises the features fHttp and fHttps and relates to the independence
of the security layer from the application protocol. It is discussed in Section 5.5.3.5.

Set SS: relates to cross language analysis with EvoGraph of the graphical user interface of the Mozilla
Application Suite and is discussed in detail in Section 5.5.3.6.

5.5.3.5 Analyzing features with EvoGraph

For the discussion of detailed structural analysis of feature evolution, we use again the two features fHttp
and fHttps. A schema with their logical coupling is depicted in Figure 5.13 and the detected structural
dependencies from source code change analysis in Figure 5.14.

One of the more interesting file pairs is nsSocketTransport.cpp from netwerk/base and nsNSSIOLayer.
cpp from security/manager/ssl. In the first co-change transaction the SSL part for the fHttps feature was
integrated into the system. As a result of this transaction we found the symbol nsISSLSocketControl in the
source code changes of nsSocketTransport.cpp. For the second file—nsNSSIOLayer.cpp—we were able to
find nsISSLSocketControl in the vector of identifiers derived from the change transaction and thus found a
new depends-on relationship in its corresponding include file. Horizontal mining of nsSocketTransport.cpp
reveals that the interface nsISSLSocketControl has been added in this change transaction. For the second

2Gecko is Mozilla’s rendering engine

5.5. STRUCTURAL ANALYSIS WITH EVOGRAPH 97

Figure 5.13 Stickiness view of the features fHttp and fHttps with respect to the module structure. ROOT
designates the root node of the module tree.

— module structure
logical coupling
--- co—change path
Feature HTTP
Feature HTTPS

netwerk
Q

o ROOT

ssl 2 maager security

file we found that the dependency on this interface was added during this transaction and has not been
removed again. In contrast to the first file, this file is actively maintained in current releases.

Summarizing the results for this file pair, we found six transactions which also comprised changes of
component interfaces. Two of the transactions can been seen as costly since the build architecture had to
be changed as well. One change transaction involved also a modification of the user interface, which can
require extra effort for manual testing of the changes. Another quantitative interesting result is that, about
50% of the changes concerning the common strings were introduced in separate change transactions.

To summarize, fHttps had been added in a later stage and maintained a number of structural dependen-
cies for about two years. With the global re-engineering event (D) the structural dependencies have been
removed almost completely (see Figure 5.14).

5.5.3.6 Cross language level analysis

Another aspect of the EvoGraph approach is its capability to offer support for the analysis of cross language
dependencies as well. Due to the lack of a file-pair with high stickiness, we analyze the file-pair navigator.
xul and navigator.js from the module xpfe.

The files are part of Mozilla’s GUI which consists of a number of user-interface declarations written in
XML and underlying clue code written in JavaScript. These directives are interpreted via an internal shell
of the browser. A new full functional browser instance within an existing browser window can be created
by pasting the following URL chrome://navigator/content/navigator.xul into the browser window. Since
the were developed together with the whole Mozilla Application Suite they have also a very low stickiness,
but we detected virtually no dependencies in the label-view. In the words-view they share a large number
of identifiers which are responsible for the high adhesion.

As depicted in Figure 5.15 the curve for the cumulated values indicates an increasing number of shared
symbols without re-structuring events. This type of curve is typical for file-pairs residing in the same
directory. Though the number of added symbols does not seem to have a limiting factor, the curve is flat-
tening towards to the latest releases. Conspicuous in the diagram is that a few symbols are more frequently
changed by one file and other symbols typically by the other file. For instance, “oncommand” is about
100 times more frequently used by navigator.xul in the different source code changes than by navigator.js.
As counter example “getElementByld” appears about 10 times more frequently in navigator.js than by
navigator.xul.

A frequent occurring pattern is the day-fly anti-pattern, indicating possible incorrect approaches or
other mistakes. For instance, a naming problem occurred with function “addToUrlbarHistory” which
also existed as “AddToUrlbarHistory”. Another day-fly example is “popupBlockerMenuCommand” (Bug
198846) which has been removed in the subsequent revision due to a security problem (Bug 235457).

Also with other files from the system a number of logical couplings exist. This indicates the simul-
taneous development of the Mozilla base system and its application instance as the files navigator.js and
navigator.xul. Table 5.11 shows an excerpt of logically-coupled files with still detectable couplings be-

CHAPTER 5. CASE STUDIES

Figure 5.14 Commonalities between features fHttp and fHttps.

98

loser A A A X A v B X A
GetProxyForObject
SetUser)
2001 X X X X X X X X X ¥ v &
anddr a v\ a
PR_END_OF_FILE_ERROR v
I v x
4 v
A x v v U
N A A x v v v
5 g
Y & x A x v X X & & x
m = = %
» x X X x — x A M v v
x A v v &
A x X ' A v v ¥
A x AV X v .
A x X X v v B v v
A A x X X v v & v v
A X X a x % v &
o X 5 x v v oz v v
A B X X x Aoy x x A v v
A x X x v v =8 ¥
£]
-
£ £]
a g
I v s v
6—%=a X co——a4 ﬂ
I v
A A A v v X 4 v v
a X Y x A A v, m . M m
2 a v
PRExplodedTime IS A AV v 4 B v v
PR_StringToNetAddr B A B A s % H v
PR_GMTParameters A A A v v v v
1999-03-17 9990524 1999-08-17 1999-12-19 2000-04-11 000-10-05 2001-02-10 001-05-31 2001-09-15 011214 2002-06-06 2002-08-05 2002-11-05 20030221 003-06-12 003-10-15 2004-01-16
[S R I S S | 4 75 16 7 18 19 10 011 12 (13 0 14 115 16 17 18 (19 T 20 1 21 22 723 1 24 25 7 26 1 27 28 129 1 30 (31 7321 33 (34 1 351 36 37 138 139 40 1411 a2 43 | 44 | 45 46 1 47 1 48 a9 1 50 1 510 52
HrTe
HITPS
© & 5
O ® © © Q Q ©
° g G ¢ =
& £]
€} 5 & o = = -
€ 5}
T
€ m =
(€] m S =4
e} G €5 =
1S5 2] H
5@ ’ i
<5
5 < eI H =
X
8 g 0 5] = =] m | o
G o
L= = =i 1 i AW = =
nsisenvceManager = = © 5] 2 =
1999-03-17 1999-05-24 1999-08-17 1999-12-19 2000-04-11 000-10-05 2001-02-10 001-05-31 2001-09-15 fo01-12-14 2002-06-06 2002-08-05 002-11-05 2 1 2003-06-12 2003-10-15 2004-01-16
v v 203 e s v e 7 v g o9 M0t 1112 13 0 1 018 16 017 18 F19 v 20 v 21 22 V23 v 24 P25 v 26 0 27 28729 v 30 31 v 32 0 33 N34 v 35 1 36 37 v 38 ' 39 a0 v a1 a2 43 1 44 a5 (a6 v 47 1 a8 (a9 v 50 1 51 0 52
HrTe
HITPS

(b) word-view

(a) label-view

5.5. STRUCTURAL ANALYSIS WITH EVOGRAPH

Figure 5.15 Structural changes (solid line) and cumulated values (dashed line) for file-set S5.

014

0.054-

.05

Table 5.11 Logical coupling between user interface files and the underlying base system.

LC | Module File Module File #
A xpfe nsBrowserlnstance.cpp | xpfe navigator.js 51
S docshell nsDocShell.cpp xpfe navigator.js 33
S dom nsGlobalWindow.cpp xpfe navigator.js 24
A | xpfe utilityOverlay.js xpfe navigator.js 21
A | xpfe nsBrowserlnstance.cpp | xpfe navigator.xul | 18
A | xpfe nsContextMenu.js xpfe navigator.js 16
S docshell nsWebShell.cpp xpfe navigator.js 16
A | xpfe nsWebShellWindow.cpp | xpfe navigator.js 16
S content nsDocumentViewer.cpp | xpfe navigator.js 12
S dom nsGlobalWindow.cpp xpfe navigator.xul | 11
A | xpfe nsWebShellWindow.cpp | xpfe navigatorxul | 11
A xpfe utilityOverlay.js xpfe navigatorxul | 11

100 CHAPTER 5. CASE STUDIES

tween the entities. As expected, the file with the strongest logical coupling nsBrowserInstance.cpp stems
from the same module.

From the labe- and word-view depicted in Figure 5.16 we can deduce that a number of direct struc-
tural dependencies exist which are the cause for the frequent pairwise changes. In contrast to some other
previously inspected file-sets, a major re-structuring event is not observable in this configuration.

5.5.3.7 Discussion

All file-sets maintain a high indirect structural dependency which stems from the large number of com-
mon component interfaces they use. Moreover, S3 has also a direct structural dependency which makes
things worse. As a consequence, both files can be considered to have an instable structural dependency
and will exhibit co-change behavior in the future as well. Though the developers are aware about some
structural shortcomings, a solution has not been realized so far. We have identified a number of interesting
evolutionary properties of Mozilla with the EvoGraph approach during the evaluation of the case study:

* the graphs provides feedback about the structural dependencies which not only allows to identify the
responsible source code entity but also allows to identify interesting change patterns;

* the visualizations provide a comprehensive overview about past development activities;

* re-engineering events can be identified and can assessed to identify successful or unsuccessful mea-
surements;

* tracing source code links into GUI related files provides insight into structural dependencies between
different implementation concepts which are not captured by other software analysis programs; and

* from the mining perspective, change transactions exhibit a more complex and heterogenous structure
with respect to dependency exposure than expected. This increases the effort to fully track and
understand the evolutionary impact of source code changes.

In the next section we discus the actual effect on the executable code of source code changes applied
on the Mozilla Application Suite with respect to selected versions.

5.6 EvoTrace - observing evolution via runtime data

As in the previous chapters we continue to use the Mozilla Application Suite as a representative and chal-
lenging case study. Major reasons for that are the already existing Release History Database with structural
and evolutionary information. Furthermore, results of this work have been integrated into the Release
History Database to further augment the exploration of the software evolution information space.

The used snapshots for this evaluation is based on version 1.7 (released 2004-06-18) and version 1.4
(released 2003-07-01) of the Mozilla code base. Version 1.7 is used because it is the latest version we
have release history data. Releases prior to 1.4 require an outdated version of the GNU compiler collection
(GCC), thus earlier releases are not compilable with our currently installed version of GCC (which was
version 3.3.3 at that time).

To demonstrate the EvoTrace approach we use a subset of the available Mozilla modules. They are
related to web content representation and layout and appeared already in the previous sections. Table 5.12
lists the selected modules.

5.6.1 Data collection

Before data collection can start some preparation work of the testee has to be done. Both source code
versions of Mozilla are instrumented via the —finst rument-functions compiler option provided by
GNU compiler collection. This option generates instrumentation code for entry-to and exit-of functions.
Just after function entry and just before function exit, the following profiling function will be called with
the address of the current function and its call site [119]. Returns from methods can be recorded with a
similar C function.

To avoid conflicts with instrumentation functions the attribute __no_instrument_function__has
to be applied. This prevents their recursive invocation. Another source of conflict is Mozilla’s thread library

101

5.6. EVOTRACE - OBSERVING EVOLUTION VIA RUNTIME DATA
Figure 5.16 Commonalities between nsBrowserInstance.cpp and navigator.js.

stiopbiey

26 TS 08 6y) 8r 1 Ly 1 9y Sy o by LG9y 2 1 Ty, Ov | 68 1 88 | 6 | 95 1 S8 . VE | €8 1 28 i I8 | OB 1 62 4 82) 8 4 Ly 9 Vo€ iz T 0 T

S0-6667 1-go-s66T

ML EL oy e

VL
TE-50-T002 TT-v0-6007 LT-80-666T

s
§F-10-Po0d &-or-200d £-s0-8o0d -o-20od B-tr-Hod Boo-tiod " EBso-tood 5-on-Food So-s
j§ PV —
v M
v
v
- v
v
v
v
v
3
3
X x x x x v
v
a5 x B
X v
v
X x x x x v
X
X
v X X X X X v
v
v
A A x
X v
A X X A Iy v K X v
Iy v iy A X v X b x x
x v oA X AV X B X
A X
v A X Iy b3 A v
v ox v A A R & x v
2) SROMLAN 51 31v1s
@ TV dols
ry——
e T T T R T R T T T R T T T T T R T I S S
9t-10-5007 ST-0r-8002 21-90-5007 Te-Zo-8002 S6-Tr-2007 S6-80-c007 §6-90-c002) i-21-T60 S1-60-T007 T-so-16or 0-Zo-T002 50-01-0007 Ti-v0-6007 1666 L1-80-6661 +2-50-6661 £1-S0-s661
[E} = =
© [Eamd)
% %
g o] G =
O ® 0O
4 =2 85 = Ial ¢
©—*—0 [, | = m = =
o Q) = Mo [a]
8 E 5
o B &
5] o E = — mﬂm
= = E! o 5 5o
= © o ©

®
o

(b) word-view

(a) label-view

CHAPTER 5. CASE STUDIES

102

Figure 5.17 Execution trace for Mozilla modules as Gantt diagram.

Other - 7

XPCOM -6 /

s A/

HTML Style System — 4 X

oons L\

XPToolkit - 2

New Layout Engine - 1

MathML - 0

sampling interval 0

Other - 7

Invocation legend: — >50% >25% >10% 7 >5% L >2.5%

XPCOM - 6

XML -5

HTML Style System — 4

DOM -3

XPToolkit - 2

New Layout Engine — 1

MathML - 0

sampling interval 0

(b) Mozilla 1.7

(a) Mozilla 1.4

5.6. EVOTRACE - OBSERVING EVOLUTION VIA RUNTIME DATA

103

Figure 5.18 Interval-based tree-ring invocations for Mozilla modules as matrix view.

Other -7

XPCOM -6

XML -5

HTML Style System - 4

DOM -3

XPToolkit — 2

New Layout Engine - 1

MathML - 0

Other -7

XPCOM -6

XML -5

HTML Style System - 4

DOM -3

XPToolkit — 2

New Layout Engine — 1

MathML - 0

Interval

© © © © Iig

17

© © © @ 16

- 15

© @ 0 © S u

- 12

© © @ 11

10

© © © 9

8

© ©® @ i’

5

© © © 4

3

© O 2

1 2 3 4 5 6 7 0
(a) Mozilla 1.4

Interval

© © © © Iig

17

© @@ o i

- 15

©© o

- 13

- 12

© © @ 11

10

© © © 9

8

o (@e s

5

© 0 0 4

3

© O 2

1 2 3 4 5 6 7 0

(b) Mozilla 1.7

104 CHAPTER 5. CASE STUDIES

Figure 5.19 DOM related invocations in Mozilla 1.4 (left) and 1.7 (right).

Interval

3 DOM - 2 XPToolkit

3 DOM - 2 XPToolkit

6 XPCOM - 3 DOM

3 DOM - 6 XPCOM 6 XPCOM 12

3 DOM -5 XML 5 XML 6

4 HTML Style System — 3 DOM 4 HTML Style System — 3 DOM

3 DOM - 7 Other 3 DOM - 7 Other

Table 5.12 Selected Mozilla modules and their source code directories.

Module ID Module Source Directories

1037 MathML layout/mathml

1046 New Layout Engine layout/base, layout/build, layout/html

1086 XPToolkit content/xul, layout/xul

1010 Document Object Model dom, content/base, content/events, content/html/content,
content/html/document

1045 New HTML Style System content/html/style, content/shared

1077 XML content/xml, expat, extensions/xmlextras

1087 XSLT content/xsl, extensions/transformiix

1081 XPCOM xpcom

5.6. EVOTRACE - OBSERVING EVOLUTION VIA RUNTIME DATA 105

Listing 5.4 Telling the C compiler not to instrument the designated function.

void __attribute__ ((__no_instrument_function__))
__cyg_profile_func_enter (void :callee , void = caller)

Table 5.13 Basic results obtained from trace data.

Mozilla Version 1.4 | Version 1.7 | A (% between versions)
Binary size 82,109,017 | 101,012,842 | +23
Number of events 23,878,728 18,822,452 221
Callee addresses 12,077 11,644 | -3.6
Caller addresses 41,962 37,011 -12
Number of threads 4 51| +25
Deepest call nesting 153 164 | +7.2
Number of methods 11,940 11,563 | -3.2
Number of files 868 850 | -2.1
Files from modules 403 396 | -1.7

nsprpub. We require some functions of this library to determine the thread context under which the
instrumentation function is executed. For this library we completely disabled code instrumentation. After
this preparation step, both program versions were compiled using the same compiler and configuration
options.

To avoid interference through user interactions, we implemented a shell script which automatically
starts the application with the specified test-parameters and terminates the application after a predefined
timeout period. As test-scenario we use a copy of a page of the W3C’s MathML test suite which we placed
on our web server’. Differences in the resulting execution traces due to network indeterministic can be
neglected since the selected modules are not related to network communication. As timeout when the
application shall receive the QUIT signal we determined one second where no events are recorded to be
sufficient.

Additionally, pre-loading of web-pages, changes to the page cache and the URL visit history are causes
for differences in the execution traces, especially when running different versions of the program. To
minimize these impacts, we used three test-runs in a row whereas only the results of the last one is used (the
test-runs two and three produced traces with a similar number of events). To avoid conflicting interactions
with the window manager of our test-system, we used a separate X-Window server without any window
manager functionality. During test-runs the application window is redirected to this separate server while
trace data are stored on the local disk drive.

Currently, we used the C print f-function to record each enter or exit event. The snippet below
depicts the data format produced by the instrumentation function:

eOx8cede20m0x8cedf09t0x8£26548

Four types of information are recorded: (1) the event-type (enter or exit); (2) the callee address; (3) the
caller address (starting at 'm’); and (4) the thread context (starting at ’t’).

5.6.2 Post-processing and quantitative results

After the import of the raw data into the database via a Perl script, we can obtain first quantitative results
with simple SQL queries. The results are listed in Table 5.13 for both Mozilla versions.

The binary file of version 1.7 is large compared to version 1.4 but the code seems to be leaner and
produces less execution trace events. Even though listed as exact numbers, the number of events vary
slightly between test-runs since network communication or the OS timing is not deterministic.

3http://www.infosys.tuwien.ac.at/ staff/ mf/ test/iwpc05/math3.xml

106 CHAPTER 5. CASE STUDIES

The number of different start addresses of invocations found in the execution traces is given by callee
addresses. This differs from number of methods—number of different methods signatures found in object
files—which is based on the symbol information delivered by nm. Differences originate from C++ language
constructs and internal management tasks of the runtime library. The caller addresses lists the number of
different addresses from where methods have been invoked. To assign traces to the correct thread context
we record the thread ID at each event. Consequently, the number of threads reflects the total number of
different IDs found.

One aspect not covered by “traditional” profiling is the nesting-level. With deepest call nesting we give
the deepest level of invocations found in the execution traces. During the import phase the callee address
information is combined with the symbol information from object files. Here, the number of files represents
the number of successful maps to source files. In a post-processing phase, we then identified those files
which belong to the modules we are interested in (files from modules). This speeds up later data analysis.

5.6.3 Visualization

After the generation, filtering and first quantitative evaluation of the test-data, we visualize the results
for evolution tracking. As described in the previous section, we divide the execution traces into twenty
different intervals for sub-sampling. This is sufficiently small to distinguish different types of interaction
phases but is large enough to create “readable” visualizations. While the interval size is more relevant for
the first diagram type we present here, it is of minor relevance for the other two.

5.6.3.1 Gantt diagram

One well-known form for visualization of execution traces are Gantt diagrams which are suited to study in-
teractions on a very fine-grained level. Since our EvoTrace approach is designed to reveal coarse changes in
system interaction, we use a “reduced” form of the Gantt diagram type where the invocations are sketched.
In Figure 5.17 this modified diagram type is depicted with the filtered invocation sequences of Mozilla 1.4
(a) and 1.7 (b) respectively. In both diagrams the invocation frequencies between modules are divided into
six classes: > 50%, > 25%, > 10%, > 5%, > 2.5% and < 2.5% whereas invocations of the last class
are not shown. Invocations are depicted as lines with different shapes representing their frequency between
modules.

When visually comparing diagrams (a) and (b) the differences in invocation intensity between the
modules Other and XPCOM are significant. This was surprising, since we did not expect such extreme
changes. Interesting to see are also the mutual invocations between Other and XPCOM. But this is an
expected result since Other contains all other modules we did not explicitly identify.

Roughly, four phases can be distinguished: (A) prelude; (B) user interface related activities (XPToolkit
is the cross-platform user interface); (C) an intermediary phase; and (D) content related activities including
MathML. The main differences are that phase (A) begins in version 1.7 two time-slots earlier compared
to version 1.4 and that the intermediary phase (C) can be clearly identified. Remarkable is also the strong
communication path in slot 7 from module XPCOM to XPToolkit which appears in both versions.

5.6.3.2 Matrix view

To overcome the problem of clutter in the Gantt diagram, we use a specific matrix view, which supports the
visualization of invocations as cross product between modules. Callers are placed on the horizontal axis
and callees are placed on the vertical axis. For instance, to find the invocations from XPCOM to HTML
Style System can be found by going to column 6 and move up till row 4. During the development of this
view we noticed, that presentation quality suffers from the wide spread of invocation frequencies that can
differ by an order of magnitude of 5. As solution, we introduced five frequency classes according to the
overall maximum number of invocations. Each class has a fixed size so we get data sets with maximum
value € [0.2,0.4,0.6,0.8,1.0]. The data are then scaled to the desired size during diagram generation. As
the forth dimension in our visualizations we have the time dimension. We decided to use a tree-ring scheme
and rainbow colors to depict the twenty intervals: dark blue indicates the first interval—most inner ring—
and red indicates the last interval. Since the values are scaled to different maxima—one maximum for each

5.6. EVOTRACE - OBSERVING EVOLUTION VIA RUNTIME DATA 107

Mozilla version—sizes between both diagrams must be compared via absolute values from the database. A
brief comparison indicates that the communication in version 1.7 is more distributed compared to version
1.4 of Mozilla. In contrast to Figure 5.17 where the changes in the invocation frequencies are not directly
recognizable, the matrix type view depicted in Figure 5.18 supports perception of these changes in an
intuitive way.

Striking is the high number of invocations between XPCOM and Other in Figure 5.18.(a) whereas
Figure 5.18.(b) shows a more “balanced” characteristic. Another interesting result is that communication
starts earlier in version 1.7 (e.g., XPCOM - HTML Style System) compared to the predecessor version
(which is also supported by the Gantt diagrams). This can be interpreted in such a way, that the system has
been optimized and web pages are now delivered faster to the user.

Next, we give a more detailed view of one selected software module with respect to invocations with
other modules.

5.6.3.3 Detailed module view using Kiviat diagrams

As result of the EvoTrace approach, we obtain multidimensional data sets. To overcome some of the limi-
tations of the previous views, we decided to use Kiviat diagrams for a detailed view on the communication
between modules. Two diagrams covering a range of 180° each, face by face, allow a quick comparison of
specific module data between two releases. Based on the experiences with the wide value range we sorted
values in ascending order and limited the result set to the six most frequent invoked module pairs. Fur-
ther modifications concern the scaling of the data sets during diagram generation. For data representation
we use a 4-dimensional dataset. The actual value of each data point in the diagram is determined by the
following scaling formula:
2 F if2F <1

max

Vk,abts = § 1 if2F =1 (5.4
1+001xs if2F >1

whereas max is the overall maximum of F', and

F= Z fk,a,b,s (55)

s<n

is the cumulated value if invocations between module M, and M, for version k of Mozilla over the time-
slots ts < n (n € {0,1,...,19}). Division of the maximum by a constant factor together with the 2F > 1
branch, reduces the biasing effect of “spikes” in the final diagram.

The resulting diagram for module DOM is depicted in Figure 5.19 whereas the DOM - XPToolkit,
XPCOM - DOM, and DOM - XPCOM are reduced in size (2F > 1 branch). In contrast to the matrix view,
the data sets for the different releases are scaled with a common factor. Thus both sides of of the diagram
are directly comparable. Our example graph indicates for the modules DOM and XPToolkit that commu-
nication has doubled. Especially during the center period (light area) the increment was substantial. This
perception is supported by data from the database where 50,190 invocations for version 1.4 and 105,001
for version 1.7 have been recorded. Further interesting are the delays when communication starts with
relevant modules. Examples for early communication (inner dark area) in version 1.4 are DOM - XPCOM
(both directions) and DOM - Other, respectively. Compared to version 1.7 no significant changes can be
found for these modules. As a counter example with respect to scheduling information, we refer to the pair
HTML Style System - DOM where communication starts late in both program versions.

Another interesting area of application is the deduction of uses relationships. This is facilitated by
this diagram type, since results are sorted by frequency and further subdivided than in the Gantt diagram
or Matrix view. As depicted in Figure 5.19 most communication takes place in a single direction between
modules. Counter example is DOM - XPCOM where communication is shown to happen in both directions.

5.6.4 Discussion

With a traditional database approach large amounts of trace data can be handled efficiently, the database
queries are simple to implement and access via standard SQL query interface for third party tools is pos-

108 CHAPTER 5. CASE STUDIES

Figure 5.20 Number of references to keywords NetBSD, OpenBSD, and Linux found in FreeBSD change
logs.

300 T T T T T T T T T T
250 | T
2 200 . » b
2
o
o
‘© !
~ 150 | 4
5]
9]
o
5 X
P4 &
100 X4 7
; : i X
50 | * X I *+
4 & BAE DU X;EXXWJ:; e e] e
¥ *x b g Kb ; W L %
e T XXXW%Q *xx&xw N S %&&* XXE K e X g
PRTA KOLR LR Ko B R E ¢ T xR ><|>2K>< RS

1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004

NetBSD OpenBSD ---%--- Linux

sible. Another advantage is that storing the program traces in the Release History Database supports fast
retrieval and detection of a system’s interaction patterns without losing context related detail information.
During our experiments access speed was not in issue. The detection of invocation sequences of a single
trace with more than 19 - 10° events using a Java program and MySQL database on a Pentium 4, 2.8GHz,
1GB takes less than 5 minutes, which we considered reasonably fast. If a speed up for pattern detection is
required, the problem space can be nicely partitioned via invocation-levels.

Though some of the results can be achieved with data from conventional profiling as well, focus of the
EvoTrace approach is the evaluation of program traces for evolution analysis. Our visualizations provide
insights into changes on arbitrary detailed level to track the changes between system releases.

5.7 EvoFamily - identifying commonalities in product families

For the evaluation of the approach, we decided to we study the evolution and commonalities of three
variants of the BSD (Berkeley Software Distribution), a large open source operating system. The research
questions we tackle are concerned with how to generate high-level views of the system discovering and
indicating evolutionary highlights. The release history for the three selected variants represents about
8.5GB of data and 10 years of active development.

The selected three variants—FreeBSD, NetBSD, and OpenBSD—of BSD are large software systems
consisting of an operating system kernel and a number of external programs such as Is, passwd, the
GNU Compiler Collection (GCC), or the X windows system. These variants have between 4,800 for
the OpenBSD variant and 8,000 directories for the NetBSD variant. The number of files varies between
30,000 (FreeBSD) and about 68,000 (NetBSD). They are long-lived, actively maintained software systems
representing about 8.5GB of data stored in three different repositories. Furthermore, release information
is available as CVS data for all three variants with direct access to the current repositories. The systems
itself possess different characteristics which can be described as follows: The FreeBSD # projects aims to

4http://www.freebsd.org/ [30 June 2006]

5.7. EVOFAMILY - IDENTIFYING COMMONALITIES IN PRODUCT FAMILIES 109

Figure 5.21 Number of references to keywords FreeBSD, OpenBSD, and Linux found in NetBSD change
logs.

300 T T T T T T T T T H T
250 —
X

200 ‘_

Number of references

1994 1995 1996 1997 198 1999 2000 2001 2002 2003 2004

FreeBSD —+— OpenBSD ------ Linux

Figure 5.22 Number of references to keywords FreeBSD, NetBSD, and Linux found in OpenBSD change
logs.

300 T T T ;" T T Hl T T T
250 |- ! ¥ i
, 200 ool ! 1
3
o
2 ! : ‘
< 150 | ‘ HEEN ‘ R .
° i ! i | “
5 |
| O LE A
i e AR | :
B I AR At g i |
S BRI T s T sl
Iskin "‘H\\ A
50 - ‘ o IR f“\ H“ '+ HeER it
| *w L | wﬁ: M|
RRRRLL Y R
| ‘ u++ \ kL
N‘L\)&%ﬁ{mxﬁ i“ ;Lﬁﬁgw M&%ﬁ

1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004

FreeBSD —+— NetBSD <~ Linux *

110 CHAPTER 5. CASE STUDIES

Figure 5.23 Change coupling between modules of the source code structure of the OpenBSD system with
emphasize on the module structure.

(a) Change coupling complete system. (b) Change coupling with focus on source modules.

Table 5.14 Common files in different BSD variants.

Variant Variant all modules | src/sys/ only
FreeBSD | NetBSD 3,810 1,333
FreeBSD | OpenBSD 3,839 1,079
NetBSD | OpenBSD 6,969 6,847

be more user application centric and thus it can be seen as desktop OS rather than server platform. Its first
release was in December 1993. NetBSD ° is targeted onto portability and supports more than 10 different
CPU types with together more than 50 different hardware platforms. Among them are exotic platforms
such as Acorn, Amiga, Atari or VAX.Its first release was in October 1994. As representative of a server
platform the aim of the OpenBSD © project lies on security and the integration of cryptography. Its first
release was in October 1996. While NetBSD and FreeBSD were directly derived from the 4.3BSD branch,
OpenBSD was derived from the NetBSD branch in October 1995.

5.7.1 Quantitative comparison

First we give a quantitative comparison of the number of artifacts which are common for the different
systems. To determine the number of common C files in the different Release History Databases we use
multi-database SQL queries which can be nicely written in MySQL as whereas rbsnet and rbsdopen
are the Release History Databases for NetBSD and OpenBSD, respectively.

Table 5.14 shows the result for the different variants. While column “all modules” indicates the total
number of common files found, column “src/sys only” indicates the common files within this particular
subtree. Interesting is the high number of artifacts which are common in NetBSD and OpenBSD. This can
be explained by the fact that OpenBSD was derived from NetBSD as mentioned previously.

5lm‘p:// www.netbsd.org/ [30 June 2006]
S http://www.openbsd.org/ [30 June 2006]

5.7. EVOFAMILY - IDENTIFYING COMMONALITIES IN PRODUCT FAMILIES 111

Listing 5.5 Counting common C files in the different projects.

SELECT COUNT(x)
FROM rbsdnet.cvsitem n, rbsdopen.cvsitem o
WHERE n.rcsfile=o.rcsfile AND n.resfile REGEXP ”\\.c$”;

Table 5.15 Information flow between variants of the BSD systems based on lexical search.

Variant Keyword | all revisions | revision > 1.1
FreeBSD | netbsd 5,131 3,577
openbsd 2,729 1,353
linux 1,791 1,387
NetBSD | freebsd 2,852 2,186
openbsd 2,679 2,224
linux 1,547 1,125
OpenBSD | freebsd 2,406 1,933
netbsd 16,802 7,423
linux 775 463

5.7.2 Change report text analysis

As substitution for a detailed text and code clone analysis, we use keywords which were frequently used
by the program authors and recorded in change reports. As useful keywords we identified freebsd, netbsd,
openbsd, and interestingly linux.

Table 5.15 lists the number of referenced artifacts between product variants based on a lexical search
for the chosen keywords in the change logs. Column one lists the name of the product variant used to
retrieve the change logs and column two the respective keyword. Column three entitled “all revisions”
lists the number of distinct artifacts found in the Release History Database having change logs with the
specified keyword. Column four titled “revision > 1.1 lists the number of distinct artifacts found in the
Release History Database having change logs with the specified keyword and not having a revision number
of “1.1” (which denotes the initial revision). The significant difference between the values in column three
and four can be interpreted in such a way, that a larger number of files were imported from other systems
and further maintenance is decoupled from the originating version.

An interesting property when relying on certain keywords is its implicit specification of information
flow. Just the simple appearance of the word FreeBSD in NetBSD’s change log message desribes the
information flow from FreeBSD in NetBSD. In contrast to this, the mining for similarties in the change log
messages requires timely information as well to determine the direction of information flow.

5.7.3 Reference distribution

During the lexical search for the given keywords we recorded in total 12,540 change logs for FreeBSD,
9,468 for NetBSD, and 20,906 for OpenBSD. Based on these results, Figure 5.22 depicts the distribution
of references with respect to the observation period. Visually the histogram for OpenBSD suggest a strong
decreasing trend in the information flow from other platforms into the OpenBSD source code repository.

Table 5.16 Linear regression for referenced keywords as y = d + kx for the whole observation period, for
the years 1995-2001 (y = di 2 + k1 22) and the years 2001-2004 (y = d3 3 + k3 3).

Variant ‘ d ‘ k ‘ d172 ‘ kJLQ ‘ dgfg ‘ kg_yg

FreeBSD 22,7 | 0.897 | -2.67 | 1.46 387 | -2.35

NetBSD -22.7 1.28 | -15.7 | 1.14 | -21.3 | 1.31

OpenBSD | 407 | -2.57 543 | -490 | 668 | -4.48

112 CHAPTER 5. CASE STUDIES

For the other two system FreeBSD and NetBSD the results are depicted in Figure 5.20 and 5.21, respec-
tively. Though, especially the NetBSD exhibits an increasing trend, we found the largest number of alien
artifacts within the OpenBSD system. To underpin the visual perception of the growing trends we use lin-
ear regression analysis to find the dependency between the number of references and time-scale intervals.
To test the development of the references over the given observation period we computed the values for the
whole period and two sub-intervals:

* the first interval accounts for about 2/3 (variables ki 2 and d; 2) of the observation period which
corresponds to the years 1995-2001;

* the second interval accounts for about the last 1/3 (variables k3 3 and d3 3) of the observation period
which represents the last 36 months of the development history (years 2001-2004).

Table 5.16 shows the results for the three variants indicating a strong increasing trend for FreeBSD and
NetBSD (k > 0 for both variants over the whole observation period). For FreeBSD this trend reverses for
the last 36 months (k3 3 < 0). The low number of total change logs found for NetBSD and the positive
trend in the change dependency of NetBSD suggest that large amounts of source code are still derived from
the other OS variants. This perception is also supported by Table 5.15 since NetBSD has the highest ratio
between the two counted categories “revisions > 1.1 and “all revisions”. In contrast, OpenBSD exhibits a
decreasing trend in both sub-intervals and the whole observation period starting from a high level (straight
line in Figure 5.22). In the next sections we will evaluate these dependencies and provide a more detailed
look onto the linkage with respect to different products.

5.7.4 Change impact analysis

To show the impact of changes onto the module structure with respect to foreign source code we selected
OpenBSD for a closer inspection since we counted here the most keywords referencing other OS (see
Table 5.15). The relevant artifacts were identified through lexical search as previously described. Based
on the search results and the change log data the impact of change dependencies on the module structure
is evaluated. The result of this step is depicted in the Figures 5.23(a) and 5.23(b). It shows the module
structure together with change dependencies derived from the change log data. While filled circles indicate
the nodes of the directory tree, shaded boxes indicate different product variants. We use 5 as glyph for
FreeBSD, & for NetBSD, and E is used for Linux. The approach for generating the layout for change
dependencies information is based on Multi Dimensional Scaling (MDS) [91] which we used already to
visualize to impact of problem report data onto Mozilla’s module structure.

To avoid cluttering of the figure with the several hundred modules of the source code package, we
shifted relevant information from lower-level nodes of the nested graph structure towards the root node
until a predefined threshold criterion—at least 64 references through change couplings per node—is met.
The node sizes indicate the number of references found for each node and its sub-trees. While dashed lines
indicate the directory structure of the source package, solid gray and black lines (pink and red on color
displays) indicate the logical coupling between different parts of the system.

Figure 5.23(a) shows the dependencies between modules with emphasize on the module structure (149
nodes). The distribution of the glyphs for FreeBSD, NetBSD, and Linux indicates a significant impact—
though decreasing trend—of the other OS variants onto the development of OpenBSD. Only very few
modules such as libpthread—POSIX threads were not part of the Linux kernel sources—or /ists (on the
bottom left in Figure 5.23(a)) are not infected by “Linux virus”. This wide distribution of Linux related
change dependencies is a surprising result since we did not expect such a distribution after the quantitative
analysis. Interesting as well is that change dependencies occur mainly within the src/sys sub-structure
which represents the kernel related source code parts.

After filtering of less relevant modules and shifting the information to higher-level modules in the
hierarchy we obtain the graph depicted in Figure 5.23(b) (14 nodes). Here, the graph layout respects the
strength of coupling relationships—the stronger the coupling, the closer the nodes—between the different
modules. This more comprehensible and less cluttered picture of couplings highlights the dependencies
of the documentation in src/share/man, the system administration programs in src/sbin, user application
programs such as /s in src/usr’bin and src/usr’sbin from the OS kernel related files underneath src/sys.

5.7. EVOFAMILY - IDENTIFYING COMMONALITIES IN PRODUCT FAMILIES 113

Table 5.17 Topmost referenced files with one of the given keywords in the change logs of OpenBSD.

Keyword | Count | Path

freebsd 59 | src/sys/dev/pci/files.pci

52 | src/sys/dev/pci/pciide.c

52 | src/sys/dev/pci/pcidevs

50 | src/sys/arch/i386/i386/machdep.c

. 48 | src/sys/conf/files

netbsd 45 | src/sys/arch/i386/i386/machdep.c

43 | src/sys/dev/pci/pciide.c

39 | src/sys/conf/files

34 | src/sys/arch/i386/conf/GENERIC

. 34 | src/sys/dev/pci/files.pci

linux 14 | src/sys/compat/linux/linux socket.c
14 | src/sys/compat/linux/syscalls.master
13 | src/sys/compat/linux/linux ‘misc.c

7 | src/sys/compat/linux/files.linux

7 | src/share/man/manS8/compat linux.8

Interesting to see is also the strong coupling via “foreign” source code changes between src/sys/arch/i386
and src/sys/dev since this coupling spans across the module hierarchy.

Since the size of the nodes indicates the number of relevant change entries found, we can conclude that
the strongest impact of change coupling was on src/sys, src/sys/dev, src/sys/arch, and src/sys/arch/i386.
Table 5.17 lists an excerpt of the topmost referenced artifacts which suggests a high information exchange
with other software systems.

An example for the propagation of commonly required feature is the introduction of the PCI bus. Since
this device type was not widely available at the time of the OpenBSD fork in 1996, support had to be
added later requiring several separate changes as Table 5.17 suggests. Another interesting aspect is the
relationship with Linux. The listing of if wireg.h suggests that specific information about WLAN adapters
are obtained from Linux as well.

5.7.5 Detailed change analysis

Since the three BSD variants originate from the same UNIX branch, it is to expect that also a number of
source code changes exhibit the same or at least similar structure. For a manual verification we randomly
selected one file which is available in all three variants. For this file—ufs quota.c from the src/sys/ufs/ufs/
directory—we manually inspected the revision history for significant changes.

One significant change was the modification of a function call in the FreeBSD version of ufs'quota.c
on 1994-10-06 (revision 1.2 — 1.3) resulting in eight modified source lines. The diff-snippet—depicted
below—for the affected source code revision shows a single change of a source line. The first line indicates
the removed code, whereas the third one shows the replacement code. The three dashes in-between indicate
a delimiter line. In the change log we found the following comment, which indicates the reason for the

Listing 5.6 Source code change in FreeBSD.

< sleep ((caddr_t)dq, PINOD+2);

> (void) tsleep ((caddr_t)dq, PINOD+2, ”dgsync”, 0);

source code modification: “Use tsleep() rather than sleep so that 'ps’ is more informative about the wait.”
The same modification in the NetBSD version has been applied on 2000-05-27 which is six years later
than the original modification (revision 1.16 — 1.17) and in OpenBSD more than eight years later on 2001-

114 CHAPTER 5. CASE STUDIES

11-21 (revision 1.7 — 1.8)—though without the (caddr_t) type cast listed in the preceding code snippet.
The diff-snippet below depicts the modification.

Listing 5.7 Source code change in NetBSD (seven years later).

< sleep ((caddr_t)dq, PINOD+2);

> (void) tsleep (dq, PINOD+2, ”dgsync”, 0);

In the NetBSD variant of the change log the comment is less informative: “sleep() -> tsleep()”. While
in NetBSD this change still produces similar results when building the revision deltas via diff, in OpenBSD
the change was part of a larger source code modification consisting of 380 added and 161 deleted source
lines (CVS does not identify modified lines, instead every modified line accounts for one added and one
deleted line). Analogous to the given example, many changes can be found with varying degree of similar-
ity making it difficult to track source code propagation.

5.7.6 Discussion

During experiments with our Release History Database we noticed some shortcomings which have to be
resolved prior to a thorough analysis of the different product variants. First, through moving and renam-
ing files in the CVS repository by the developers of the software systems, the historical information is
segmented. Thus related segments have to be identified and concatenated to describe a continuous histor-
ical time-line of an artifacts history. Second, as result of the import process artifacts which have identical
file names are assigned different IDs in the Release History Database. This may negatively effect multi-
database queries for comparison of artifacts since artifacts with common origins have to be identified for
every evaluation of a database query. This mapping of IDs will be ideally stored in the consolidated part of
the Release History Database as indicated in Figure 4.8.

From the software evolution analysis point of view, BSD represents an interesting software system
which opens a wide field for further analysis. Since detailed information about the source code is available
it would be beneficial to apply a tool for code clone detection such as [84] proposed by Kamiya et al. To
improve the results of the lexical search we currently explore the application of techniques related to Latent
Semantic Indexing (LSI) [96].

5.8 Résumé

In the course of the implementation of this case study, we have identified a number of interesting evolu-
tionary properties of the Mozilla Application Suite with our EvoGraph approach. All file-sets maintain
a high indirect structural dependency which stems from the large number of common component inter-
faces they use. Moreover, S3 has also a direct structural dependency which makes things worse. As a
consequence, both files in S3 can be considered to have an instable structural dependency and will ex-
hibit co-change behavior in the future as well. With respect to the Mozilla application files navigator.js
and navigator.xul which constitute the browser user interface, our results about their structural dependen-
cies and their frequent modifications are not surprising. As shown by means with our navigator.js and
nsBrowserInstance.cpp example, the results underpin the option offered by the EvoGraph approach to an-
alyze other types of artifacts than source code—such as *.cpp and *.h files—as well for their structural
stability. Further not only to our case study restricted results are:

« the visualizations provide comprehensive, qualitative feedback about the logical coupling between
structural dependencies which not only allows to identify the responsible source code entities but
also allows to identify interesting evolutionary (anti-) patterns;

¢ detected anti-patterns provide means to assess the success of a design and its structural stability with
respect to its evolvability;

5.8. RESUME 115

* re-engineering events can be identified and can assessed to identify successful or unsuccessful events;

* tracing source code links into user interface related files provides insight into structural dependen-
cies between different implementation concepts which are not captured by other software analysis
programs; and

* from the mining perspective, change transactions exhibit a more complex and heterogenous structure
with respect to dependency exposure than expected. This increases the effort to fully track and
understand the evolutionary impact of source code changes.

Though, some basic knowledge about the application itself is required, the implementation of the parsers
for the fact extractors is easy to accomplish. A further refinement of the source code change analysis will
facilitate the reasoning about change types, e.g., method signature changes, function body changes, or
control blocks.

Comparing execution traces is a simple but efficient way to gain information about changes in the “as-
implemented” architecture without the need to have access to the source files. The extracted information
can be used to recover interaction patterns between different entities such as methods, files, or modules.

EvoTrace allows us to track the evolution of selected modules and present the findings in three differ-
ent kinds of visualizations: Gantt diagrams, Matrix views and Kiviat diagrams. Based on these graphical
representations, we have shown that certain aspects such as invocation structures between modules can be
tracked and comprehended quite effectively. The properties of execution traces, such as detailed informa-
tion about “scheduling” data, invocation patterns, call frequency, nesting-levels, or threading, complements
results gained from release history and structural analysis.

We used EvoTrace to analyze and compare the execution traces of two different versions of the Mozilla
Application Suite to obtain insights into its longitudinal development. With respect to our case study, we
were able to determine the evolution from a “dispatcher” oriented communication in version 1.4 to a more
direct communication between software modules in version 1.7.

Retrospective analysis of related products with EvoFamily opens interesting perspectives on the evolu-
tion of large software systems. With minimal changes and additions to existing tools it is already possible
to recover the information flow between the different variants and evolutionary hot-spots with respect to the
module structure. Through the application of a lexical search in the change logs we were able to reveal the
increasing information flow of two variants of the systems. For the third system we found a decreasing flow
starting from a very high level. For one selected system we applied an adapted method which generates
high-level views of the module structure of a system with respect to their coupling and information flow
from other product variants. To support these findings about the information flow we performed detailed
change analysis of a randomly selected file. Interesting findings with respect to the inspected systems are:
the wide distribution of Linux related change dependencies in the source code; the strong change coupling
within the subtree of src/sys; and the propagation of source code taking several years.

116 CHAPTER 5. CASE STUDIES

Chapter 6

Conclusions and Future Work

In this chapter we present our conclusions and outline possible areas of future work based on the knowledge
gained during the work on this thesis. Since the choice of the case study has a significant impact on the
obtained results, we think that the selection of a large open source software system contributes much to
transparency and comparability of different approaches for software analyses in general. The Mozilla
Application Suite, which served us as case study for a number of research experiments, provided us with
many surprising results in terms of evolutionary and structural properties.

6.1 Conclusions

EvoGraph is an efficient and lightweight approach to systematically identify evolutionary hot-spots in the
longitudinal development of large scale software system. We successfully applied our prototype imple-
mentation on the Mozilla Application Suite and found interesting structural shortcomings which persisted
over a longer period of time and still exist though the developers are aware of them.

As shown in our case study, we performed our analyses on different abstraction levels such as file-,
module-, and feature-level. Interesting results on file-level were obtained in cross-language analyses such
as scripting language and user interface definition representing different abstraction levels. The results
showed the required communication points and the synchronous changes in the two abstraction levels.
However, we performed most analyses on module-level based on the results obtained from the stickiness-
view. Here, we were able to identify evolutionary anti-patterns such as the day-fly pattern. It can be
interpreted as problems with the implementation or insufficient knowledge about possible side-effects. A
quantitative evaluation of selected logically-coupled entities with respect to structural stability confirmed
our opinion about hot-spots of the source code. On feature-level we obtained interesting results with
respect to the interwovenness of the features such as fXml and fMathML. The opposite, an example for
successful re-engineered, are the dependencies between the features fHttp and fHttps which have been
removed completely.

EvoTrace, our approach to exploit dynamic information for evolution analysis provides an insight into
the effect of changes—also beyond method-level. The results depicted on a large scale show the shift from
a central oriented communication to a more distributed one. The approach is a valuable supplement to pure
source code analysis approaches.

With respect to our EvoFamily extension we were able to successfully evaluated the approach against
a set of three related products. In the course of this evaluation we identified interesting commonalities
between the systems. As a consequence of the parallel development of the systems, sometimes bug fixes
took several years to propagate from one system to the other.

In the current version of our Release History Database—with respect to the case study—we evaluated
only a small part of the available problem report information. As most of the information is available
as free text, a more detailed evaluation is difficult. More machine interpretable date such as type and
semantic of change are desirable extensions. Nevertheless, problem report information are valuable for
instance in tracking related change reports across different time-slots as they occur in the day-fly pattern or

117

118 CHAPTER 6. CONCLUSIONS AND FUTURE WORK

in identifying recurring problems.

EvoGraph and the related approaches are part of the EvoZilla framework which has proven to be a
flexible platform for the implementation of our retrospective software evolution analysis prototypes. A
further integration with the development process is useful and could be accomplished via its integration
into an IDE such as Eclipse [1] to provide immediate feedback to the developers.

6.1.1 Accept/ reject hypotheses

For the fulfillment of our research goals, we formulated four hypotheses which have been validated in the
course of our case study. Following we address these hypotheses and justify their respective acceptance or
rejection:

 Correlation hypothesis Hla: accepted.

Through systematic filtering of change reports and enhancement with problem report information we
obtained a set of logical couplings which corresponds with structural dependencies. With respect to
our case study, such dependencies are frequently caused by inheritance relationships, method invo-
cations, variable accesses of shared classes providing some base functionality. Direct dependencies
of logically-coupled entities were seldom to observe. An important filter criterion was the size of the
co-change transactions. The larger the number of files participating in an transaction, the higher the
probability of changes with little or no effect on the functionality of the system.

Traceability hypothesis HIb: accepted.

Our observations from the case study indicate the coherence between source code metrics and the
degree of logical coupling. Thus, entities having a high fan-out consequently have higher number
of co-changes due to a number interface signature changes. As these shortcomings have not been
remedied for a significant number of release in our test system, the frequent co-changes are therefore
recorded in the systems history.

Stickiness filter hypothesis H2: accepted.

Considering our case study, we successfully applied our filtering mechanism to extract those entities
violating the systems modularity. Furthermore, visual clustering revealed their detailed interdepen-
dencies without the clutter of entities having only local logical coupling. Consequently, from the
depicted entities in the stickiness-view the design-smells such as God classes are easy to identify.
Results obtained also conform with publicly available information on the case studies home page
and our earlier empirical studies.

Source diff hypothesis H3: accepted.

Via the application of special parsers and source code heuristics about the system under inspection,
we extracted information on a quantitative and qualitative sufficient level. The results correspond
with our other empirical studies about the Mozilla Application Suite with respect to structural de-
pendencies. Furthermore, based on the available evidence we detect anti-patterns such as day-fly,
pulsar, or skipjack in the structural evolution of a system.

6.1.2 Research goals

With respect to the research goals formulated at the beginning of this thesis, we now provide our justifica-
tions based on the results and experiences obtained from our case:

* Storage and computational model GI: fulfilled.

EvoZilla is the implementation of our storage and computational model enabling the longitudinal
analysis of a large software system or even a family of related products. It provides the necessary
data basis and infrastructure for the implementation of the subsequent analysis approaches such as
EvoGraph or EvoTrace.

6.2. FUTURE WORK 119

 Detection of structural entities G2: fulfilled.

The exploitation of stickiness has proven to be a fast and efficient method to point out dependencies
between structural relevant files. Though most changes between the files were the not surprising
interface changes, they had their origin in the commonly used artifacts which we could identify with
our lightweight parsers. Since the degree of exploitable coupling depends primarily on different
factors such as system age, design, development method, application domain etc. we presume that
the result vary significantly between systems.

o Feedback generation G3: fulfilled.

As the detailed results of the case study indicate, the proposed EvoGraph approach delivers structural
information for longitudinal analysis in sufficient quality and quantity from the source code changes.
Our comparative study of structural properties has shown that a vast amount of the detailed infor-
mation is unnecessary and can be neglected in the course of the evaluation of a systems structural
stability. In contrast to traditional structural analysis approaches, EvoGraph captures the complete
live-time of a project, supports the identification of longitudinal change patterns, and is efficient with
respect to information extraction process.

To summarize, EvoGraph is a well-scalable approach to point out structural shortcomings and provides
detailed structural feedback about a system’s longitudinal evolution. Consequently, the indicated hot-spots
are first class candidates for re-structuring or re-engineering activities whereas the generated feedback facil-
itates the reasoning process about the system as-implemented architecture. Another interesting application
area for our approach is the monitoring of ongoing projects for evolutionary patterns. Its efficiency and
scalability enable the institutionalization within an existing development environment.

6.2 Future work

During the work on this thesis we recognized a number of further research areas which are worth further
exploration to extend the described EvoZilla framework:

* Dynamic analysis: Integration of execution trace information on a per release interval base for a
finer-grained evolution analysis to obtain a holistic view onto the application system including con-
figuration files. This will reveal the impact of source code changes in more detail than plain source
code analysis. Challenges in the analysis are the large amount of data, efficient generation of the
traces, and the identification of commonalities in the execution traces;

Structural information: Currently, in our model structural dependencies are extracted and used on a
low level only. Since structural information such as names of components, methods, global constants,
etc., do not change frequently between different releases, a sufficient approximation—especially in
the retrospective analysis process—for intermediary revisions can be made. By augmenting our
model with this “interpolated” structural information the impact of structural changes can be esti-
mated more accurately and the quality of feedback can be improved as well;

Fine-grained source code changes: Related with the extraction of structural information is the provi-
sion of information about source code changes on a fine-grained level. Valuable would be the seman-
tics of the source code change and some classification of the change according to the IEEE standard
for software maintenance. The additional value of this information for the retrospective analysis is
that finer granular information such as control constructs, variable declarations, mathematical oper-
ations are evaluated as well. It allows for instance to reason which changes have propagating effects
and how they propagate through the structure. The estimated severity, e.g., new control constructs
added, of the source code enhance the visualizations of EvoGraph and assessment of structural sta-
bility;

Semantic information: The current model considers semantic information only in a very limited way
such as build architecture or GUI related changes obtained from file-type analysis. Other potential
sources for semantic information are the text portions of the modification reports, associated problem

120 CHAPTER 6. CONCLUSIONS AND FUTURE WORK

reports or in-line documentation. The difficulty with these sources is the information extraction from
the free-text messages composed of prose in developer jargon;

* Code clone data: Integration of results from code clone detection are exploitable as additional source
for coupling dependencies between files. As with other data, code clones have to be filtered and clas-
sified to become valuable and usable information. In contrast to logical coupling based on the release
history, code clone based coupling does not require a ripening process. It can be used instantaneously
in the source code version it has been detected in;

e Product family evolution: Again, code clone detection between different products can be used to
provide more information about artifacts and possibly related modifications. An analysis can reveal
the degree of how tight product variants are coupled and which changes are to expect if a modifica-
tion is applied onto one product of the product family. Another interesting area for future work is
the detailed analysis of change log information for commonalities, since they may provide relevant
information about the origin of propagating changes as our case study indicates.

Some of the above research questions have been briefly addressed in the course of this thesis. From our
point of view the most interesting extensions to the EvoGraph approach is an evaluation model about
architectural stability. Based on the collected information, it will be possible to show in detail how the
system accommodates new requirements, what changes have been made and which parts of the architecture
are negatively affected.

Appendix A

Structure and Evolution

In Chapter 4 we introduced our EvoGraph approach and explained its theoretical foundations. To validate
the main hypothesis Hla we will study the structure and evolution the Mozilla Application Suite on a
high-level view between different selected modules. The objective is to find correlations between module
coupling and logical coupling.

Therefore, we developed an approach to generate higher-level views of the structure of a software
system to study the coupling between structural elements. Typically, these views are depicted as graphs
whereas nodes represent the structural elements and edges the relationships between them. In particular,
relationships represent dependencies between structural elements that lead to coupling between these el-
ements. In theory, strongly coupled structural elements are more likely to be modified together than are
loosely coupled elements. Therefore, structural designs concentrate on encapsulating common behavior
within an structural element, consequently increasing cohesion and lower coupling [23]. An structural
element in the context of this chapter is a software module that results from the decomposition of a soft-
ware system into implementation units. According to Clements et al. [37] we refer to a software module
as an implementation unit of software that provides a coherent unit of functionality. Modules present a
code-based way of considering the system [23].

The approach which we called ArchEvo, enriches source code models extracted from source code and
execution traces with logical coupling data obtained from the Release History Database. The data sources
are integrated into a common directed attributed graph from which ArchEvo abstracts higher-level views
using architecture recovery [112]. In the analysis of the dependencies between architectural elements
ArchEvo correlates both types of abstracted coupling relationships and shows strongly coupled elements
as-implemented but also verifies these couplings by release history data. Consequently, the architectural
views computed by ArchEvo provide an integrated view on the structure and its evolution.

A.1 Approach

Recent research in analyzing structural elements concentrated on information obtained from source code
and the running system. Briand et al. reported on the different measurements and described a framework
of coupling measurements between classes and objects [32].

In the EvoGraph approach we focused on investigating release history information including version,
change, and defect data to obtain information about logical couplings between source code entities [52]
and then to deduce structural shortcomings.

The ArchEvo approach is a combination of both approaches mentioned before to analyzing coupling
relationships on the structural level. Figure A.1 depicts the process followed by ArchEvo. The process
steps are described in the following subsections.

121

122 APPENDIX A. STRUCTURE AND EVOLUTION

Figure A.1 ArchEvo architecture evolution analysis process.

Facts Fact Graphs Views

Source Code 4. Analysis

i > i
1. Extraction 2.Integration Views

ArchEvoDB Views

Y

Execution Traces

Views 5. Visualization

3. View Abstraction
Configuration Fact Graphs
Management Data

A.1.1 Fact extraction

Implementation specific data (i.e. facts) is obtained by applying static and dynamic analysis techniques
including parsing and profiling. Parsing delivers static source code models that contain the source code
specific entities such as files, packages, classes, methods, and attributes and the dependencies between
them. Dependencies are file includes, class inherits and aggregates, method calls and overrides, and vari-
able accesses. Profiling delivers run-time data (i.e. method call sequences) for an executed scenario and
complements static source code models.

The release history information is the same as we used for the EvoGraph case study. Logical cou-
pling and other relevant evolutionary information are therefore taken from our Release History Database.
Currently, logical coupling is detected on the level of source files which is sufficient for this approach.
However, the integration of logical coupling on a more fine-grained level would be beneficial and is subject
to future work.

As mentioned before different tools are used to obtain facts from a software system each using its own
output format. For instance, static source code models and execution traces are stored in an ASCII file as
directed attributed graphs (fact graphs in Figure A.1). ArchEvo uses the Rigi Standard Format (RSF) [141]
for storing these graphs. Nodes represent extracted source code entities (e.g. files, classes, methods,
attributes) and edges represent the relationships between them (e.g. includes, inherits, invokes, accesses).

To facilitate a common access of both data sources they have to be integrated into a common repository
which is the ArchEvoDB. Because the ArchEvo abstraction approach needs directed attributed graphs,
the Release History Database data is converted to a fact graph. Nodes of this graph represent source
files and modification reports and edges represent couplings between source files. Next, these fact graphs
are integrated into the ArchEvoDB that is a fact graph containing the source code, run-time and logical
coupling data.

A.1.2 Data integration

The two basic requirements for integrating the extracted heterogeneous fact graphs are: (a) facilities for
extending the meta model to integrate new entity and relationship types; and (b) algorithms to map local
to unique identifiers. Concerning the first requirement we use the FAMIX meta model for object-oriented
programming languages [123] and extend it towards the inclusion of configuration management data, ar-
chitectural views and metric data. Latter data is computed by the ArchEvo view abstraction algorithm
described in the next subsection. The second requirement is fulfilled by our integration tool that maps
locally unique identifiers (within a data file) to identifiers unique within the repository (ArchEvoDB).
Each fact graph is read by the integration tool that for each entity and relationship contained in the fact
graph finds out about its identifier in the repository and if not exists computes a new one. Using the unique
identifiers the new facts (nodes, edges, and attribute records) are added to the ArchEvoDB. The result is a
common repository containing the integrated fact graph that forms the basis for the on-going abstraction

A.1. APPROACH 123

Table A.1 Measures computed for relationships abstracted to the module-level.

Measurement Description

nrRelsDirect # of abstracted direct lower-level relationships

nrRelsIndirect # of abstracted indirect lower-level relationships

nrAdirectB # of source code entities of direct relationships in module A
nrAindirectB # of source code entities of indirect relationships in module A
nrBdirectByA # of source code entities of direct relationships in module B
nrBindirectByA | # of source code entities of indirect relationships in module B
refcount # of modification reports of a logical coupling relationship

and analysis tasks.

A.1.3 View abstraction

In this step architectural views are abstracted from the integrated fact graph. ArchEvo supports abstraction
to different levels of abstraction whereas the level is specified by the user. The abstraction algorithm used
by ArchEvoDB is based on the approach presented by Holt et al. in [78], but extends it by computing
measures for abstracted elements and relationships. An approach similar to Holt’s also has been described
by Feijs et al. in [50].

Relationships between architectural elements and abstraction measures are computed using binary re-
lational algebra. Currently, we use the grok tool [49] for calculating the binary relations because grok is
able to handle extracted and integrated fact graphs in RSF format. However, the abstraction of attributes
of relationships is not straight forward with grok, hence we implemented a workaround to handle this
problem: For instance, the attribute values of lower-level relationships that form an abstracted relationship
are summed up. Ongoing work is concerned with storing fact graphs in a relational database and use the
standard query language SQL instead of grok.

Algorithm 4 defines the ArchEvoDB abstraction algorithm that is applied to the directed attributed fact
graph.

Algorithm 4 ArchEvo abstraction algorithm.

for all entitypair(A, B) do
: set A « entities contained by A

1:

2

3 setB « entities contained by B

4: relsAB < relationships of type T between set A and set B
5: if #relsAB > 0 then

6 rel « create relationship of type 7" between A and B

7 measures <— compute abstraction measures of rel

8 end if

9: end for

Having selected a relationship type to be abstracted the algorithm processes each pair of higher-level
entities and first computes the two sets of entities (e.g. methods) contained in A and B (line 2,3). Next,
the relationships of type T between the entities of set A and set B are queried (line 4) from the graph. If
there is at least one relationship between any two lower-level entities of set A and B then an abstracted
relationship between A and B is established (line 6). Measures concerning the number of affected lower-
level relationships and entities are computed and stored in attributes of the new relationship (line 7). For
instance, the number of modification reports making up a logical coupling is summed up and stored in
the refcount attribute of the abstracted coupling relationship. Table A.1 lists the measures computed for
abstracted relationships (these measures also apply to other levels of abstraction).

Basically, ArchEvo distinguishes between direct and indirect dependencies whereas indirect stands for
transitive. For both kinds of dependencies the number of involved source code entities are computed.

124 APPENDIX A. STRUCTURE AND EVOLUTION

Resulting measures reflect the weight of abstracted relationships and consequently quantify the coupling
between architectural elements. They are used in the analysis of the dependencies between architectural
elements.

A.1.4 Analysis

The goal of the analysis step is to indicate strongly coupled elements and to provide clues why these
elements have such a strong coupling. The data used for this analysis is stored in the abstracted views. They
contain the architectural elements (nodes), the coupling relationships (edges), and the coupling measures
(attributes).

Coupling measures are stored in attributes of (abstracted) relationships. For instance, the number of
method calls is stored in the nrRelsDirect attribute of an abstracted invokes relationship. For an abstracted
couples relationship the number of modification reports is stored in the refcount attribute. Based on these
attributes ArchEvo uses graph queries to determine the relationships of interest and the corresponding
architectural elements.

Graph queries are implemented using a combination of binary relational algebra and Perl scripts. For
example, to determine the elements with the strongest logical coupling ArchEvo applies a query to the
refcount attribute of couples relationships that have a value greater than a given threshold.

For the correlation of source code coupling with logical coupling relationships ArchEvo ranks each
relationship with respect to the computed average or maximum of a given relationship attribute (e.g. ref-
count). The ranking values are represented in matrices one per attribute. Using statistical methods on the
matrices the correlation between the different relationships is computed providing users with quantitative
measures about the dependencies.

The result of the quantitative analysis are refined architectural views that facilitate an assessment of
the current architecture and its evolution, as well as the identification of design shortcomings. They also
provide good starting points for a more detailed analysis of architectural dependencies, for instance, by
selecting two modules that are strongly coupled.

The detailed analysis that qualifies and verifies quantitative measures is performed on a finer-grained
level of abstraction such as the file-level. Considering the reduced set of files of the selected higher-level
entities (i.e. modules) the logical coupling relationships are qualified with respect to the source code
coupling that caused it. Next the results of the qualification are reflected back to the higher-level views to
enrich them with more details. They direct to locations of design shortcomings that should be resolved to
smoothen evolution and maintenance.

The result of ArchEvo comprises a set of refined architectural views that show source code and logi-
cal coupling dependencies on different levels of abstraction. Higher-level views on software modules or
features contain quantified coarse-grained information about elements and their relationships. In the next
section we study the Mozilla Application Suite for correlations between structural and logical couplings.

A.2 Investigating the coupling within Mozilla

The outcome of the ArchEvo structural analysis process are views that indicate the correlation between
structural coupling of files or modules as the cause and logical coupling as effect. To extract the facts for this
study, we applied our ArchEvo approach onto version 1.3a of the Mozilla Application Suite. Starting from
the design documentation we focused our analyses on a selected set of software modules as architectural
elements that implement the internal representation (i.e. content) and the layout of web pages. Table 5.12
lists the selected software modules together with corresponding source code directories containing their
implementation. The mapping between modules and source code directories has been taken from Mozilla’s
design documentation.

Subgoals in our analyses were: (a) abstraction from the low-level information to the level of software
modules; and (b) correlating the abstracted implementation specific relationships with the modification
specific ones. The objective was to obtain measurements (sizes, weights) of different coupling dependen-
cies between the selected software modules including source code but also logical couplings as listed in
Table A.1

A.3. RESUME 125

Based on these views and measurements we analyzed the as-implemented design of these modules with
respect to their maintainability and evolvability. These two related quality attributes of software systems
are influenced by the coupling between software modules. Basically, the stronger the coupling is the more
effort has to be spent for maintaining and evolving the system [32]. The following sections report on our
findings about the selected modules listed in Table 5.12.

A.2.1 Module view

The module view reflects the as-implemented design together with the release history information. The
elements of the representation are software modules, their source code and logical coupling relationships.

The resulting graphs—different types of relationships can be selected for the graph generation—gives
a first quantitative feedback about inter-module coupling. Figure A.2(e) depicts invocations—represented
as red/solid arcs—between the selected modules which are represented as gray boxes. Width and height of
the boxes indicate the size of software modules in terms of number of global functions and methods (width)
and global variables and attributes (height) of a module. The distance between two modules is determined
by the number of logical couplings between these modules and indicated as straight, cyan/solid line. The
values for the logical couplings stem from filtered information of our Release History Database.

With this view one can easily spot the strong coupling between the three modules in the center of
the graph (New Layout Engine, DOM, XPToolkit). Interesting to see is the high number of mutual calls
between these modules. Consequently, when modifying one of these modules it is very likely that the other
modules have to be touched.

The other graphs in Figure A.2 show the same coupling graph with different structural properties.
For instance Figure A.2(d) depicts the inheritance relationship as obtained from the fact extraction. The
strongest edges indicate a high correlation with the strong couplings between the modules. In both views
the mutual dependencies can be observed as well. As a result, abstracted module views pointed out loca-
tions of strong couplings that caused pairwise modifications of software modules.

A.2.2 Detailed module view

For a detailed evaluation of the coupling between software modules we selected the modules New Layout
Engine and XPToolkit. The focus was on the source files of both modules that have the strongest coupling.
These files represent the design critical source code entities. The resulting graph comprises six files and is
depicted in Figure A.3. It shows method invocations (red/solid arcs) gathered from the runtime data and
the logical couplings between source files (straight cyan/solid lines).

The layout, i.e., the relative position of the boxes to each other, is defined by the number of logical
couplings found between files. Actually, the highest coupling crossing the module boundaries exists be-
tween nsPresShell.cpp and nsXULDocument.cpp with 81 problem reports. The flags with the numbers
of invocations attached to the arcs are always pointing from the caller and indicate the actual number of
dynamic invokes found. For example, there are four calls from nsXULElement.cpp to nsPresShell.cpp and
three calls in the other direction.

The central position of nsCSSFrameConstructor.cpp indicates a high degree of coupling with other
files. This strong logical coupling is further strengthened by the method invoke relationships which cover
all other files in this view. Therefore, this file is the most critical entity concerning evolving or maintaining
the two modules.

Summarized, the case study showed the bottom-up abstraction of lower-level information to architec-
tural views (i.e. module view). These views are mandatory to point out the modules that are most involved
in pairwise changes. Next going top-down from architectural views to lower-level views the details making
up and causing these logical couplings in the implementation are revealed.

A.3 Résumé

The ArchEvo approach combines information gained from static and dynamic analyses of the source code
with release history data into specific views on different abstraction levels. The analysis applies fact ex-

126 APPENDIX A. STRUCTURE AND EVOLUTION

Figure A.2 Contrasting the results for different structural coupling: accesses, aggregates, extends, inherits,
invokes, and overrides.

a N
fk ewHTMLStyleSystem
61
oolklt 46
™

accesses aggregates

(a) modules.accesses (b) modules.aggregates

cNewHTMLStyleSystem eWHTMLStyleSystem

extends inherits

(c) modules.extends (d) modules.inherits

WHTMLStyleSystem

invokes overrides

(e) modules.invokes (f) modules.overrides

A.3. RESUME

127

Figure A.3 Invocations between files (Modules XPToolkit and New Layout Engine).

Legend: @

New Layout Engine nsXULDocument.cpp

XPToolkit
- - - - Module boundary

— Invoke

.

#attributes

Logical coupling

box size: P
-

D nsMenuFrame.cpp

#methods

traction and generates specific directed attributed graphs; nodes represent source code entities and edges
represent relationships such as accesses, includes, inherits, invokes, and coupling between certain architec-
tural elements. The integration of data is then performed on a meta model level to enable the generation
of structural views using binary relational algebra. These integrated structural views show intended and
unintended couplings between structural elements, hence pointing point out locations in the system with
structural and logical coupling.

128 APPENDIX A. STRUCTURE AND EVOLUTION

Appendix B

File Sets

Table B.1: File-sets with path evaluated in the case study.

Set | subset | cvsitemid | Module | File

SI | A 2423 | content/base/src nsRuleNode.cpp

SI | A 2754 | content/shared/public nsStyleStruct.h

SI | A 2782 | content/shared/src nsStyleStruct.cpp

S1 | A 2770 | content/shared/src nsCSSProps.cpp

SI | A 2548 | content/html/content/src nsHTMLTextAreaElement.cpp
SI | A 2619 | content/html/style/src nsCSSDeclaration.cpp

S1 | A 2629 | content/html/style/src nsCSSParser.cpp

SI | A 2640 | content/html/style/src nsCSSStyleRule.cpp

S1 | A 2658 | content/html/style/src nsHTMLCSSStyleSheet.cpp
S1 | A 2946 | content/xbl/src nsBindingManager.cpp

SI | A 2999 | content/xbl/src nsXBLService.cpp

SI | A 2947 | content/xbl/src nsXBLBinding.cpp

SI | A 3151 | content/xul/content/src nsXULElement.h

S1 | A 4632 | dom/src/base nsDOMClassInfo.cpp

SI | B 14170 | layout/html/style/src nsCSSFrameConstructor.cpp
S2 | A 10703 | htmlparser/src nsParser.cpp

S2 | A 10681 | htmlparser/src nsHTMLTokenizer.cpp

S2 | A 10623 | htmlparser/src CNavDTD.cpp

S2 | A 10654 | htmlparser/src nsElementTable.cpp

S2 | B 2575 | content/html/document/src | nsHTMLContentSink.cpp
S3 | A 3187 | content/xul/document/src nsXULDocument.cpp

S3 | B 13937 | layout/html/base/src nsPresShell.cpp

S4 | A 6901 | extensions/cookie nsCookieService.cpp

S4 | A 6903 | extensions/cookie nsCookies.cpp

S4 | A 6928 | extensions/cookie nsPermissions.cpp

S4 | A 6932 | extensions/cookie nsUtils.cpp

S4 | A 22658 | netwerk/base/src nsSocketTransport.cpp

S4 | A 22659 | netwerk/base/src nsSocketTransport.h

S4 | A 22663 | netwerk/base/src nsSocketTransportService.h
S4 | A 22677 | netwerk/base/src nsStorageTransport.h

129

(continued on next page)

130

(continuation from previous page)

APPENDIX B. FILE SETS

Set | subset | cvsitemid | Module File

S4 | A 22680 | netwerk/base/src nsStreamListenerTee.cpp

S4 | A 22681 | netwerk/base/src nsStreamListenerTee.h

S4 | A 22771 | netwerk/cache/src nsCacheMetaData.cpp

S4 | A 23082 | netwerk/protocol/http/src nsHttp.cpp

S4 | A 23085 | netwerk/protocol/http/src nsHttpAuthCache.cpp

S4 | A 23095 | netwerk/protocol/http/src nsHttpConnection.cpp

S4 | A 23096 | netwerk/protocol/http/src nsHttpConnection.h

S4 | A 23098 | netwerk/protocol/http/src nsHttpConnectionlnfo.h

S4 | A 23106 | netwerk/protocol/http/src nsHttpHeaderArray.cpp

S4 | A 23107 | netwerk/protocol/http/src nsHttpHeaderArray.h

S4 | A 23111 | netwerk/protocol/http/src nsHttpPipeline.cpp

S4 | A 23117 | netwerk/protocol/http/src nsHttpRequestHead.cpp

S4 | A 23118 | netwerk/protocol/http/src nsHttpRequestHead.h

S4 | A 23119 | netwerk/protocol/http/src nsHttpResponseHead.cpp
S4 | A 23120 | netwerk/protocol/http/src nsHttpResponseHead.h

S4 | A 23121 | netwerk/protocol/http/src nsHttpTransaction.cpp

S4 | A 23122 | netwerk/protocol/http/src nsHttpTransaction.h

S4 | A 23244 | netwerk/socket/base nsSocketProviderService.cpp
S4 | A 34051 | xpcom/ds nsTime.h

S4 | A 34301 | xpcom/proxy/public nsProxyRelease.h

S4 | B 23242 | netwerk/socket/base nsSOCKSSocketProvider.cpp
S4 | B 26080 | security/manager/boot/src nsSecurityWarningDialogs.cpp
S4 | B 26307 | security/manager/ssl/src nsNSSCallbacks.cpp

S4 | B 26318 | security/manager/ssl/src nsNSSCertificate.cpp

S4 | B 26326 | security/manager/ssl/src nsNSSIOLayer.cpp

S4 | B 26345 | security/manager/ssl/src nsSSLSocketProvider.cpp

S5 | A 35330 | xpfe/browser/resources/content | navigator.js

S5 | B 35331 | xpfe/browser/resources/content | navigator.xul

Appendix C

Release Dates

Table C.1: Mozilla official releases, timestamps extracted from the respective source code packages and

auto-generated release information based on revision tags from CVS.

ID | Release Release date File timestamp Revision date

53 | Moxzilla 1.7.1 2004-07-08 00:00:00 | 2004-07-08 21:16:39 | 2004-07-08 00:00:00.0
52 | Moxzilla 1.7 2004-06-17 00:00:00 | 2004-06-18 00:00:24 | 2004-06-17 00:00:00.0
51 | Mozilla 1.7 Beta 2004-03-18 00:00:00 | 2004-03-18 17:37:54 | 2004-03-18 08:41:46.0
50 | Mozilla 1.7 Alpha | 2004-02-23 00:00:00 | 2004-02-20 03:34:35 | 2004-02-19 02:15:37.0
49 | Mozilla 1.6 2004-01-15 00:00:00 | 2004-01-16 11:46:08 | 2004-01-16 05:30:53.0
48 | Mozilla 1.6 Beta 2003-12-09 00:00:00 | 2003-12-09 11:08:46 | 2003-12-09 08:39:22.0
47 | Mozilla 1.6 Alpha | 2003-10-31 00:00:00 | 2003-10-31 19:07:59 | 2003-10-29 11:53:43.0
46 | Mozilla 1.5 2003-10-15 00:00:00 | 2003-10-15 22:39:08 | 2003-10-15 10:18:59.0
45 | Mozilla 1.5 Beta 2003-08-27 00:00:00 | 2003-08-28 00:11:16 | 2003-08-27 06:00:15.0
44 | Mozilla 1.5 Alpha | 2003-07-22 00:00:00 | 2003-07-22 21:20:48 | 2003-07-11 12:34:16.0
43 | Mozilla 1.4 2003-06-30 00:00:00 | 2003-07-01 00:42:28 | 2003-06-12 02:08:49.0
42 | Mozilla 1.4 Beta 2003-05-07 00:00:00 | 2003-05-08 21:22:04 | 2003-05-08 04:43:08.0
41 | Mozilla 1.4 Alpha | 2003-04-01 00:00:00 | 2003-04-02 04:54:13 | 2003-04-01 08:23:00.0
40 | Mozilla 1.3 2003-03-13 00:00:00 | 2003-03-13 16:56:07 | 2003-02-21 11:17:16.0
39 | Mozilla 1.3 Beta 2003-02-10 00:00:00 | 2003-02-11 00:27:52 | 2003-02-10 10:49:42.0
38 | Mozilla 1.3 Alpha | 2002-12-13 00:00:00 | 2002-12-13 20:16:50 | 2002-12-12 11:17:52.0
37 | Moxzilla 1.2 2002-11-26 00:00:00 | 2002-12-01 00:25:55 | 2002-11-05 02:49:52.0
36 | Mozilla 1.2 Beta 2002-10-16 00:00:00 | 2002-10-18 18:28:47 | 2002-10-17 05:28:53.0
35 | Mozilla 1.2 Alpha | 2002-09-11 00:00:00 | 2002-09-12 20:56:19 | 2002-09-12 04:36:38.0
34 | Mozilla 1.1 2002-08-26 00:00:00 | 2002-08-27 23:59:20 | 2002-08-05 05:37:49.0
33 | Mozilla 1.1 Beta 2002-07-22 00:00:00 | 2002-07-23 20:59:45 | 2002-07-23 12:03:02.0
32 | Mozilla 1.1 Alpha | 2002-06-11 00:00:00 | 2002-06-12 20:39:18 | 2002-06-11 07:41:36.0
31 | Moxzilla 1.0 2002-06-05 00:00:00 | 2002-05-31 21:17:45 | 2002-06-06 11:37:14.0
30 | Mozilla 0.9.9 2002-03-11 00:00:00 | 2002-03-11 23:22:33 | 2002-03-11 08:18:08.0
29 | Mozilla 0.9.8 2002-02-04 00:00:00 | 2002-02-05 00:59:14 | 2002-01-23 03:07:15.0
28 | Mozilla 0.9.7 2001-12-21 00:00:00 | 2001-12-22 03:26:04 | 2001-12-14 09:05:35.0
27 | Mozilla 0.9.6 2001-11-20 00:00:00 | 2001-11-21 08:33:57 | 2001-11-09 04:18:56.0
26 | Mozilla 0.9.5 2001-10-12 00:00:00 | 2001-10-15 23:33:21 | 2001-10-05 08:41:04.0
25 | Mozilla 0.9.4 2001-09-14 00:00:00 | 2001-09-15 00:17:44 | 2001-09-15 01:18:52.0

131

(continued on next page)

132

(continuation from previous page)

APPENDIX C. RELEASE DATES

ID | Release | Release date | File timestamp | Revision date
24 | Mozilla 0.9.3 | 2001-08-02 00:00:00 | 2001-08-03 23:42:05 | 2001-07-31 05:10:29.0
23 | Mozilla 0.9.2 | 2001-06-28 00:00:00 | 2001-06-30 03:02:08 | 2001-06-30 01:54:34.0
22 | Mozilla 0.9.1 | 2001-06-07 00:00:00 | 2001-06-18 22:23:43 | 2001-05-31 02:25:33.0
21 | Mozilla 0.9 2001-05-07 00:00:00 | 2001-05-08 01:33:27 | 2001-04-25 04:24:24.0
20 | Mozilla 0.8.1 | 2001-03-26 00:00:00 | 2001-03-27 18:47:42 | 2001-03-17 01:39:04.0
19 | Mozilla 0.8 2001-02-14 00:00:00 | 2001-02-19 20:18:23 | 2001-02-10 01:05:43.0
18 | Mozilla 0.7 2001-01-09 00:00:00 | 2001-01-10 20:19:08 | 2000-12-27 12:08:18.0
17 | Mozilla 0.6 2000-12-06 00:00:00 | 2000-12-13 03:09:42 | 2000-11-14 10:24:43.0
16 | Milestone 18 | 2000-10-12 00:00:00 | 2000-10-12 21:36:50 | 2000-10-05 02:47:22.0
15 | Milestone 17 | 2000-08-07 00:00:00 | 2000-08-08 21:59:20 | 2000-07-27 06:25:31.0
14 | Milestone 16 | 2000-06-13 00:00:00 | 2000-06-15 03:56:45 | 2000-06-05 03:19:32.0
13 | Milestone 15 | 2000-04-18 00:00:00 | 2000-04-21 18:55:03 | 2000-04-11 06:05:28.0
12 | Milestone 14 | 2000-03-01 00:00:00 | 2000-03-03 19:46:03 | 2000-03-01 01:21:42.0
11 | Milestone 13 | 2000-01-26 00:00:00 | 2000-01-27 04:14:15 | 2000-01-21 03:08:55.0
10 | Milestone 12 | 1999-12-21 00:00:00 | 1999-12-22 01:28:34 | 1999-12-19 07:59:19.0
9 | Milestone 11 | 1999-11-16 00:00:00 | 1999-11-17 03:13:20 | 1999-11-09 09:31:43.0
8 | Milestone 10 | 1999-10-08 00:00:00 | 1999-10-09 04:53:07 | 1999-09-29 04:46:49.0
7 | Milestone 9 1999-08-26 00:00:00 | 1999-08-26 19:33:49 | 1999-08-17 02:03:26.0
6 | Milestone 8 1999-07-16 00:00:00 | 1999-07-16 00:54:27 | 1999-07-13 04:19:17.0
5 | Milestone 7 1999-06-22 00:00:00 | 1999-06-23 05:16:46 | 1999-06-19 02:38:19.0
4 | Milestone 6 1999-05-29 00:00:00 | 1999-05-29 01:37:21 | 1999-05-24 11:35:06.0
3 | Milestone 5 1999-05-05 00:00:00 | 1999-05-12 00:24:36 | 1999-05-03 11:52:12.0
2 | Milestone 4 1999-04-15 00:00:00 | 1999-04-16 22:00:17 | 1999-04-28 12:42:28.0
1 | Milestone 3 1999-03-19 00:00:00 | 1999-03-19 23:30:19 | 1999-03-17 06:17:24.0

Appendix D

Selected Publications

Following, we provide a list of the selected publications with title and proceedings they were published in.
This overview is organized with respect to different research fields.

D.1 Papers and journal papers

D.1.1 Release history

* [56] Michael Fischer, Martin Pinzger, and Harald Gall. Populating a Release History Database from
Version Control and Bug Tracking Systems. In Proceedings International Conference on Software
Maintenance (ICSM’03), pages 23-32, September 2003.

D.1.2 Clustering

e [57] Michael Fischer, Martin Pinzger, and Harald Gall. Analyzing and Relating Bug Report Data
for Feature Tracking. In 10th Working Conference on Reverse Engineering (WCRE), pages 90-99,
November 2003.

e [52] Michael Fischer and Harald Gall. Visualizing Feature Evolution of Large-Scale Software
based on Problem and Modification Report Data. Journal of Software Maintenance and Evolution,
16(6):385-403, November/December 2004.

D.1.3 Evolution and structure

e [112] Martin Pinzger, Harald Gall, and Michael Fischer. Towards an integrated view on
architecture and its evolution. In Proceedings of the Software Evolution through Transformations:
Model-based vs. Implementation-level Solutions (SETra’04). Elsevier Science Publishers: Utrecht,
Netherlands, 2004.

* [118] Jacek Ratzinger, Michael Fischer, and Harald Gall. Improving evolvability through
refactoring. In MSR 2005 Workshop Proceedings (MSR’05). ACM Digital Library, May 2005.

* [53] Michael Fischer and Harald Gall. EvoGraph: A Lightweight Approach to Evolutionary and
Structural Analysis of Large Software Systems. In 13th Working Conference on Reverse
Engineering (WCRE), October 2006.

D.1.4 Product families

* [55] Michael Fischer, Johann Oberleitner, Jacek Ratzinger, and Harald Gall. Mining Evolution Data
of a Product Family. In MSR 2005 Workshop Proceedings (MSR’05). ACM Digital Library, May
2005.

133

134 APPENDIX D. SELECTED PUBLICATIONS

D.1.5 Dynamic analysis

* [54] Michael Fischer, Johann Oberleitner, Harald Gall and Thomas Gschwind. System Evolution
Tracking through Execution Trace Analysis. In Proceedings of the 13th IEEE International Work-
shop on Program Comprehension (IWPC’05), May 2005.

D.2 Technical reports

D.2.1 Release history

* [58] Michael Fischer, Martin Pinzger, and Harald Gall. Observing the Evolution of Modification
Complexity of Logically Coupled Modules. In Technical Report TUV-1841-2004-01, Distributed
Systems Group, Technical University of Vienna, January 2004.

Bibliography

[1] Eclipse. http://www.eclipse.org/ [30 June 2006].

[2] Hybernate. http://www.hibernate.org/ [30 June 2006].

[3] Imagix 4D. http://www.imagix.com/ [30 June 2006].

[4] MySQL. http://www.mysql.com/ [30 June 2006].

[5] Rational ClearCase. http://www.ibm.com/software/awdtools/clearcase/ [30 June 2006].
[6] The Mozilla Bug Database. http://bugzilla.mozilla.org/ [30 June 2006].

[7] Merriam Webster’s Collegiate Dictionary. Merriam-Webster, Incorporated, 10th edition edition,
1996.

[8] GNU’s Not Unix!, 1996-2004. http://www.gnu.org [30 June 2006].
[9] The GNU Bug Tracking System, 1996-2006. http://www.gnu.org/software/ gnats/ [30 June 2006].

[10] Architectural Reasoning for Embedded Systems, 1997. http://www.itea-office.org/software’
product families ‘in "europe ‘the ‘esapos " “caf projects [30 June 2006].

[11] BitKeeper, 1997-2006. http://www.bitkeeper.com/ [30 June 2006].

[12] IEEE standard for software maintenance, IEEE Std 1219-1998. The Institute of Electrical and
Electronics Engineers, 1998.

[13] Bugzilla Bug Tracking System, 1998-2006. http://www.bugzilla.org/ [30 June 2006].

[14] Engineering Software Architectures, Processes and Platforms for System Families, 1999. hitp:
//www.itea-office.org/public/project leaflets/ ESAPS results oct-02%.pdf [30 June 2006].

[15] Subversion - Version Control Rethought, 2000-2006. http://subversion.tigris.org/ [30 June 2006].

[16] From Concept to Application in System-Family Engineering, 2001. http://www.extra.research.
philips.com/euprojects/cafe/ [30 June 2006].

[17] FAct-based Maturity through Institutionalisation Lessons-learned and Involved Exploration of
System-family engineering, 2003. http.//www.itea-office.org/public/project leaflets/ FAMILIES®
profile oct%-03.pdf [30 June 2006].

[18] Giuliano Antoniol, Massimiliano Di Penta, and Ettore Merlo. An Automatic Approach to identify
Class Evolution Discontinuities. In IWPSE ’04: Proceedings of the Principles of Software Evolu-
tion, 7th International Workshop on (IWPSE’04), pages 31-40, Washington, DC, USA, 2004. IEEE
Computer Society.

[19] Giuliano Antoniol, Vincenzo Fabio Rollo, and Gabriele Venturi. Detecting groups of co-changing
files in CVS repositories. In IWPSE ’05: Proceedings of the Eighth International Workshop on
Principles of Software Evolution, pages 23-32. IEEE Computer Society, 2005.

(20]

(21]

(22]

(23]

(24]

[25]

(26]

[27]

(28]

[29]
(30]

(31]

(32]

(33]

[34]

[35]

(36]

BIBLIOGRAPHY

Atlassian Software Systems Pty Ltd. Bug Tracking, Issue Tracking, & Project Management. http:
//www.atlassian.com/software/jira/ [30 June 2006].

Wayne A. Babich. Software Configuration Management: Coordination for Team Productivity. Ad-
dison Wesley Longman, 1986.

Thomas Ball and Stephen G. Eick. Software Visualization in the Large. IEEE Computer, 29(4):33—
43, 1996.

Len Bass, Paul Clements, and Rick Kazman. Software Architecture in Practice. Addison-Wesley
Professional, 2nd edition, 2003.

Jennifer Bevan and Sung Kim. Kenyon: A Common Software Stratigraphy Platform. http:/www.
sei.cmu.edu/cmmi/ general/ general.html.

Jennifer Bevan, E. James Whitehead, Jr., Sunghun Kim, and Michael Godfrey. Facilitating Software
Evolution Research with Kenyon. In ESEC/FSE-13: Proceedings of the 10th European Software
Engineering Conference held jointly with 13th ACM SIGSOFT International Symposium on Foun-
dations of Software Engineering, pages 177-186, New York, NY, USA, 2005. ACM Press.

Dirk Beyer and Ahmed E. Hassan. Evolution Storyboards: Visualization of Software Structure
Dynamics. In /4th IEEE International Conference on Program Comprehension (ICPC’06), pages
248-251. IEEE Computer Society, June 2006.

Dirk Beyer and Andreas Noack. Clustering Software Artifacts Based on Frequent Common
Changes. In Proceedings of the 13th International Workshop on Program Comprehension
(IWPC’05), pages 259-268. IEEE Computer Society, May 2005.

J. Bieman, A. Andrews, and H. Yang. Understanding Change-Proneness in OO Software through
Visualization. In Proceedings of 11th International Workshop on Program Comprehension (IWPC).
IEEE Computer Society Press, May 2003.

Ted J. Biggerstaff. Design Recovery for Maintenance and Reuse. Computer, 22(7):36-49, 1989.

Garrett D. Birkhoff. Lattice Theory. American Mathematical Society, Providence, RI, USA, 3rd
edition, 1967.

Lionel Briand, Prem Devanbu, and Walcelio Melo. An investigation into coupling measures for
C++. In Proceedings of the 19th international conference on Software engineering, pages 412—421.
ACM Press, 1997.

Lionel C. Briand, John W. Daly, and Jiirgen K. Wiist. A Unified Framework for Coupling Mea-
surement in Object-Oriented Systems. IEEE Transactions on Software Engineering, 25(1):91-121,
1999.

Andreas Buja, Deborah F. Swayne, Michael Littman, Nathaniel Dean, and Heike Hofmann. XGvis:
Interactive Data Visualization with Multidimensional Scaling. pages 1-34, 2001. http://www.
research.att.com/areas/ stat/xgobi/ papers/xgvis.pdf [5 July 2004], http://www-stat.wharton.upenn.
edu/ "buja/ PAPERS/paper-mds-jcgs.pdf [5 July 2004].

G. Casazza, G. Antoniol, U. Villano, E. Merlo, and M. Di Penta. Identifying Clones in the Linux
Kernel. In Proceedings of First IEEE International Workshop on Source Code Analysis and Manip-
ulation, pages 90-97. IEEE Computer Society, 2001.

Per Cederqvist, Dick Grune, Brian Berliner, Jeff Polk, and Jim Klingmon. Version Management
with CVS, 1992. http://www.cvshome.org/docs/manual/ [30 June 2006].

Neville Churcher, Warwick Irwin, and Ron Kriz. Visualising Class Cohesion with Virtual Worlds. In
CRPITS '24: Proceedings of the Australian symposium on Information visualisation, pages 89-97.
Australian Computer Society, Inc., 2003.

BIBLIOGRAPHY iii

(37]

(38]

(39]

(40]

[41]

(42]

[43]

[44]

[45]

[46]

[47]

(48]

[49]

[50]

[51]

(52]

Paul Clements, David Garlan, Len Bass, Judith Stafford, Robert Nord, James Ivers, and Reed Little.
Documenting Software Architectures: Views and Beyond. Pearson Education, 2002.

Christian Collberg, Stephen Kobourov, Jasvir Nagra, Jacob Pitts, and Kevin Wampler. A system
for Graph-Based Visualization of the Evolution of Software. In Proceedings of the 2003 ACM
symposium on Software visualization, pages 77—tf. ACM Press, 2003.

Susan Dart. Concepts in Configuration Management Systems. In Proceedings of the 3rd interna-
tional workshop on Software configuration management, pages 1-18, New York, NY, USA, 1991.
ACM Press.

Alan Mark Davis. 201 Principles of Software Development. McGraw-Hill, Inc., New York, NY,
USA, 1995.

Serge Demeyer, Stephane Ducasse, and Oscar Nierstrasz. Object-oriented Reengineering Patterns.
Morgan Kaufmann Publishers, An Imprint of Elsevier Scienence: San Francisco CA, USA, July
2002.

William Dickinson, David Leon, and Andy Podgurski. Pursuing Failure: The Distribution of Pro-
gram Failures in a Profile Space. In Proceedings of the Joint 8th European Software Engineering
Conference (ESEC) and 9th ACM SIGSOFT Symposium on the Foundations of Software Engineering
(FSE-9), pages 246-255. ACM Press, September 2001.

Dirk Draheim and Lukasz Pekacki. Process-Centric Analytical Processing of Version Control Data.
In Proceedings Sixth International Workshop on Principles of Software Evolution (IWPSE’03),
pages 131-136. IEEE Computer Society Press, September 2003.

Jirgen Ebert, Bernt Kullbach, Volker Riediger, and Andreas Winter. GUPRO - Generic Under-
standing of Programs. volume 72. Elsevier Science Publishers: Utrecht, Netherlands, October 2002.
http://www.elsevier.com/gej-ng/31/29/23/ 127/46/show/ Products/notes/inde%x.htt [5 July 2004].

S. Eick, J. Steffen, and E. Sumner. Seesoft—A Tool For Visualizing Line Oriented Software Statistics,
1992.

Stephen G. Eick, Todd L. Graves, Alan F. Karr, Audris Mockus, and Paul Schuster. Visualizing
Software Changes. Software Engineering, 28(4):396-412, 2002.

Thomas Eisenbarth, Rainer Koschke, and Daniel Simon. Aiding Program Comprehension by Static
and Dynamic Feature Analysis. In Proceedings IEEE International Conference on Software Main-
tenance (ICSM’01), pages 602—611. IEEE Computer Society Press, November 2001.

Michael D. Ernst, Jake Cockrell, William G. Griswold, and David Notkin. Dynamically Discov-
ering Likely Program Invariants to Support Program Evolution. [EEE Transactions on Software
Engineering, 27(2):99-123, 2001.

Hoda Fahmy and Richard C. Holt. Software Architecture Transformations. In /CSM "00: Proceed-
ings of the International Conference on Software Maintenance (ICSM’00), page 88, Washington,
DC, USA, 2000. IEEE Computer Society.

L. Feijs, R. Krikhaar, and R. Van Ommering. A Relational Approach to Support Software Architec-
ture Analysis. Softw. Pract. Exper., 28(4):371-400, 1998.

Patrick Finnigan, Richard C. Holt, Ivan Kallas, Scott Kerr, Kostas Kontogiannis, Hausi A. Miiller,
John Mylopoulos, Stephen G. Perelgut, Martin Stanley, and Kenny Wong. The Software Bookshelf.
IBM Systems Journal, 36(4):564—-593, November 1997.

Michael Fischer and Harald Gall. Visualizing Feature Evolution of Large-Scale Software based on
Problem and Modification Report Data. Journal of Software Maintenance and Evolution, 16(6):385—
403, November/December 2004.

(53]

[54]

[55]

[56]

[57]

(58]

[59]

(60]

[61]

[62]

[63]

[64]

[65]

[66]
[67]

[68]

BIBLIOGRAPHY

Michael Fischer and Harald Gall. EvoGraph: A Lightweight Approach to Evolutionary and Struc-
tural Analysis of Large Software Systems. In 13th Working Conference on Reverse Engineering
(WCRE), October 2006.

Michael Fischer, Johann Oberleitner, Harald Gall, and Thomas Gschwind. System Evolution Track-
ing through Execution Trace Analysis. In Proceedings of the 13th IEEE International Workshop on
Program Comprehension (IWPC’05). IEEE Computer Society Press, May 2005.

Michael Fischer, Johann Oberleitner, Jacek Ratzinger, and Harald Gall. Mining Evolution Data of a
Product Family. In MSR 2005 Workshop Proceedings (MSR’05). ACM Digital Library, May 2005.

Michael Fischer, Martin Pinzger, and Harald Gall. Populating a Release History Database from
Version Control and Bug Tracking Systems. In Proceedings International Conference on Software
Maintenance (ICSM’03), pages 23-32, September 2003.

Michael Fischer, Marting Pinzger, and Harald Gall. Analyzing and Relating Bug Report Data for
Feature Tracking. In 10th Working Conference on Reverse Engineering (WCRE), pages 90-99,
November 2003.

Michael Fischer, Marting Pinzger, and Harald Gall. Observing the Evolution of Modification Com-
plexity of Logically Coupled Modules. Technical report, Distributed Systems Group, Technical
University of Vienna, 2004.

Beat Fluri, Harald C. Gall, and Martin Pinzger. Fine-Grained Analysis of Change Couplings. In
Fifth IEEE International Workshop on Source Code Analysis and Manipulation, pages 66—74. IEEE
Computer Society, October 2005.

Martin Fowler, Kent Beck, John Brant, William Opdyke, and Don Roberts. Refactoring: Improving
the Design of Existing Code. Addison-Wesley Longman Publishing Co., Inc., Boston, MA, USA,
1999.

Thomas M. J. Fruchterman and Edward M. Reingold. Graph drawing by force-directed placement.
Software Practice & Experience, 21(11):1129-1164, 1991.

Harald Gall, Karin Hajek, and Mehdi Jazayeri. Detection of Logical Coupling Based on Product
Release History. In Proceedings International Conference on Software Maintenance, pages 190—
198. IEEE Computer Society Press, March 1998.

Harald Gall, Mehdi Jazayeri, René Klosch, and Georg Trausmuth. Software Evolution Observations
Based on Product Release History. In Proceedings of the International Conference on Software
Maintenance (ICSM’97), pages 160-166. IEEE Computer Society Press, October 1997.

Harald Gall, Mehdi Jazayeri, and Claudio Riva. Visualizing Software Release Histories: The Use
of Color and Third Dimension. In Proceedings IEEE International Conference on Software Main-
tenance, pages 99—108. IEEE Computer Society Press, August 1999.

Erich Gamma, Richard Helm, Ralph Johnson, and John Vlissides. Design Patterns: Elements of
Reusable Object-Oriented Software. Addison-Wesley Longman Publishing Co., Inc., Boston, MA,
USA, 1995.

Bernhard Ganter and Rudolf Wille. Formal Concept Analysis. Springer, 1999.

Daniel M. German. An Empirical Study of Fine-Grained Software Modifications. In ICSM ’04:
Proceedings of the 20th IEEE International Conference on Software Maintenance, pages 316-325,
Washington, DC, USA, 2004. IEEE Computer Society.

Daniel M. German, Abram Hindle, and Norman Jordan. Visualizing the evolution of software us-
ing softChange. In Proceedings of the 16th Internation Conference on Software Engineering and
Knowledge Engineering (SEKE’04), pages 336-341. Knowledge Systems Institute, 2004.

BIBLIOGRAPHY v

[69]

[70]

(71]

[72]

(73]

[74]

[75]

[76]

[77]

(78]

[79]

(80]

[81]

[82]

[83]

Tudor Girba, Stephane Ducasse, and Michele Lanza. Yesterday’s Weather: Guiding Early Re-
verse Engineering Efforts by Summarizing the Evolution of Changes. In ICSM ’04: Proceedings of
the 20th IEEE International Conference on Software Maintenance, pages 40—49, Washington, DC,
USA, 2004. IEEE Computer Society.

Tudor Girba and Stphane Ducasse. Modeling history to analyze software evolution. Journal of
Software Maintenance and Evolution: Research and Practice, 18(3):207-236, 2006.

Neil M. Goldman. Smiley - an interactive tool for monitoring inter-module function calls. In Pro-
ceedings of the 8th International Workshop on Program Comprehension (IWPC’00), pages 109-118.
IEEE Computer Society, 2000.

Susan L. Graham, Peter B. Kessler, and Marshall K. McKusick. gprof: a Call Graph Execution
Profiler. In SIGPLAN Symposium on Compiler Construction, pages 120—126, 1982.

Dick Grune, Brian Berliner, Jeff Polk, Larry Jones, Derek R. Price, Mark D. Baushke, and et al. The
Mozilla Organization. Concurrent Versions System, 1986-2006. hitp.//ftp.gnu.org/non-gnu/cvs/
[30 June 2006].

Thomas Gschwind, Johann Oberleitner, and Martin Pinzger. Using Run-Time Data for Program
Comprehension. In Proceedings of the 11th IEEE International Workshop on Program Comprehen-
sion (IWPC’03), pages 245-250. IEEE Computer Society Press, May 2003.

George Yanbing Guo, Joanne M. Atlee, and Rick Kazman. A Software Architecture Reconstruc-
tion Method. In WICSAI: Proceedings of the TC2 First Working IFIP Conference on Software
Architecture (WICSAI), pages 15-34, Deventer, The Netherlands, 1999. Kluwer, B.V.

Abdelwahab Hamou-Lhadj and Timothy C. Lethbridge. Compression Techniques to Simplify the
Analysis of Large Execution Traces. In IWPC ’02: Proceedings of the 10th International Workshop
on Program Comprehension, pages 159-160. IEEE Computer Society, June 2002.

Abdelwahab Hamou-Lhadj and Timothy C. Lethbridge. A survey of Trace Exploration Tools and
Techniques. In CASCON °04: Proceedings of the 2004 conference of the Centre for Advanced
Studies on Collaborative research, pages 42-55. IBM Press, 2004.

Richard C. Holt. Structural Manipulations of Software Architecture Using Tarski Relational Alge-
bra. In WCRE ’98: Proceedings of the Working Conference on Reverse Engineering (WCRE’9S),
page 210, Washington, DC, USA, 1998. IEEE Computer Society.

Richard C. Holt. Software architecture abstraction and aggregation as algebraic manipulations. In
CASCON ’99: Proceedings of the 1999 conference of the Centre for Advanced Studies on Collabo-
rative research, page 5. IBM Press, 1999.

Idris Hsi and Colin Potts. Studying the Evolution and Enhancement of Software Features. In Pro-
ceedings of the 2000 IEEE International Conference on Software Maintenance, pages 143-151,
2000.

Mehdi Jazayeri. On Architectural Stability and Evolution. In Proceedings of the 7th Ada-Europe
International Conference on Reliable Software Technologies, pages 13-23, London, UK, 2002.
Springer-Verlag.

Mehdi Jazayeri, Alexander Ran, and Frank van der Linden. Software Architecture for Product
Families: Principles and Practice. Addison Wesley, 2000.

Dean F. Jerding and John T. Stasko. The Information Mural: A Technique for Displaying and
Navigating Large Information Spaces. In Proceedings of the 1995 IEEE Symposium on Information
Visualization (INFOVIS’95), pages 43-50. IEEE Computer Society, October 1995.

vi

[84]

[85]

[86]

[87]

[88]

[89]

[90]

[91]

[92]

(93]

[94]

[95]

[96]

[97]

(98]

[99]

BIBLIOGRAPHY

Toshihiro Kamiya, Shinji Kusumoto, and Katsuro Inoue. CCFinder: A Multilinguistic Token-Based
Code Clone Detection System for Large Scale Source Code. IEEE Transactions on Software Engi-
neering, 28(7):654-670, 2002.

Kyo C. Kang, Sholom G. Cohen, James A. Hess, William E. Novak, and A. Spencer Peterson.
Feature-Oriented Domain Analysis (FODA) Feasibility Study, CMU/SEI-90-TR-021. Technical
report, Software Engineering Institute, Carnegie Mellon University, 1990. page 8.

Rick Kazman and S. Jeromy Carriere. Playing Detective: Reconstructing Software Architecture
from Available Evidence. Automated Software Engineering, 6(2):107-138, April 1999.

Chris F. Kemerer and SandraSlaughter. An Empirical Approach to Studying Software Evolution.
IEEE Transactions on Software Engineering, 25(4):493-509, July/August 1999.

Gregor Kiczales and Erik Hilsdale. Aspect-Oriented Programming. In ESEC/FSE-9: Proceedings
of the 8th European Software Engineering Conference held jointly with 9th ACM SIGSOFT Interna-
tional Symposium on Foundations of Software Engineering, page 313, New York, NY, USA, 2001.
ACM Press.

Miryung Kim and David Notkin. Using a Clone Genealogy Extractor for Understanding and Sup-
porting Evolution of Code Clones. In MSR ’05: Proceedings of the 2005 international workshop on
Mining software repositories, pages 1-5, New York, NY, USA, 2005. ACM Press.

Sunghun Kim, Thomas Zimmermann, Miryung Kim, Ahmed Hassan, Audris Mockus, Tudor Girba,
Martin Pinzger, E. James Whitehead, Jr., and Andreas Zeller. TA-RE: an Exchange Language for
Mining Software Repositories. In MSR ’06: Proceedings of the 2006 international workshop on
Mining software repositories, pages 22-25, New York, NY, USA, 2006. ACM Press.

Joseph. B. Kruskal and Myron Wish. Multidimensional Scaling. Quantitative Applications in the
Social Sciences, 11, 1978.

Michele Lanza. The Evolution Matrix: Recovering Software Evolution using Software Visualization
Techniques. In Proceedings of the 4th International Workshop on Principles of Software Evolution
(IWPSE’01), pages 37-42. ACM Press, September 2001.

Michele Lanza and Stephane Ducasse. Understanding Software Evolution using a Combination of
Software Visualization and Software Metrics. In LMO 2002 Proceedings (Languages et Modeles a
Objets), pages 135-149. Hermes Publications, 2002.

Michele Lanza and Stephane Ducasse. Polymetric Views - A Lightweight Visual Approach to Re-
verse Engineering. IEEE Transactions on Software Engineering, 29(9):782-795, September 2003.

Meir Manny Lehman. Laws of Software Evolution Revisited. In Proceedings of the 5th European
Workshop on Software Process Technology, pages 108—124. Springer-Verlag, 1996.

Todd A. Letsche and Michael W. Berry. Large-scale information retrieval with latent semantic
indexing. Information Sciences, 100:105-137, August 1997.

Christian Lindig. Compute Concept Lattice from Relation, 1998. http://www.eecs.harvard.edu/
lindig/src/concepts.html [30 June 2006].

Christian Lindig and Gregor Snelting. Assessing modular structure of legacy code based on mathe-
matical concept analysis. In ICSE’97: Proceedings of the 19th international conference on Software
engineering, pages 349-359, New York, NY, USA, 1997. ACM Press.

Christian Lindig and Gregor Snelting. Begriffliche Wissensverarbeitung. Methoden und Anwendun-
gen, chapter Formale Begriffsanalyse im Software Engineering. Springer, 1999.

BIBLIOGRAPHY vii

[100]

[101]

[102]

[103]

[104]

[105]

[106]

[107]

[108]

[109]

[110]
[111]

[112]

[113]

[114]

[115]

[116]

Chung-Horng Lung, Marzia Zaman, and Amit Nandi. Applications of clustering techniques to
software partitioning, recovery and restructuring. Journal of Systems and Software, 73(2):227-244,
October 2004.

Jonathan I. Maletic and Michael L. Collard. Supporting Source Code Difference Analysis. In ICSM
'04: Proceedings of the 20th IEEE International Conference on Software Maintenance, pages 210—
219, Washington, DC, USA, 2004. IEEE Computer Society.

Dane Marjanovic. Release History Meta Modeling. Master’s thesis, Department of Informatics,
University of Zurich, 2006.

Nenad Medvidovic and Vladimir Jakobac. Using software evolution to focus architectural recovery.
Automated Software Engineering, 13(2):225-256, 2006.

Florian Mitter. Tracking Source Code Propagation in Software System via Release History Data and
Code Clone Detection. Master’s thesis, Technical University of Vienna, April 2006.

Audris Mockus, Roy T. Fielding, and James D. Herbsleb. Two case studies of open source software
development: Apache and Mozilla. ACM Transactions on Software Engineering and Methodology
(TOSEM), 11(3):309-346, 2002.

Leon Moonen. Generating Robust Parsers using Island Grammars. In WCRE ’01: Proceedings
of the Eighth Working Conference on Reverse Engineering (WCRE’01), page 13, Washington, DC,
USA, 2001. IEEE Computer Society.

Hausi A. Miiller and Karl Klashinsky. Rigi-A System for Programming-in-the-large. In ICSE
'88: Proceedings of the 10th International Conference on Software Engineering, pages 80-86, Los
Alamitos, CA, USA, 1988. IEEE Computer Society Press.

Andreas Noack. An Energy Model for Visual Graph Clustering. In Proceedings of the 11th Inter-
national Symposium on Graph Drawing (GD 2003), volume 2912 of Lecture Notes in Computer
Science, pages 425-436. Springer-Verlag, 2004.

William F. Opdyke. Refactoring Object-Oriented Frameworks. PhD thesis, University of Illinois at
Urbana-Champaign, Champaign, IL, USA, 1992.

David Lorge Parnas. Software aging. pages 279-287, May 1994.

Martin Pinzger. ArchView - Analyzing Evolutionary Aspects of Complex Software Systems. PhD
thesis, Vienna University of Technology, May 2005.

Martin Pinzger, Michael Fischer, and Harald Gall. Towards an Integrated View on Architecture and
its Evolution. In Proceedings of the Software Evolution through Transformations: Model-based vs.
Implementation-level Solutions (SETra’04), volume 127, pages 183—196. Elsevier Science Publish-
ers: Utrecht, Netherlands, 2004.

Martin Pinzger, Michael Fischer, Harald Gall, and Mehdi Jazayeri. Revealer: A Lexical Pattern
Matcher for Architecture Recovery. In 9th Working Conference on Reverse Engineering (WCRE),
October 2002.

Martin Pinzger, Harald Gall, Michael Fischer, and Michele Lanza. Visualizing Multiple Evolution
Metrics. In Proceedings Symposium on Software Visualization (SoftVis’05), May 2005.

Uta Priss. Formal Concept Analysis in Information Science. Annual Review of Information Science
and Technology, 40:521-543, 2006. to appear.

Elke Pulvermiiller, Andreas Speck, James O. Coplien, Maja D’Hondt, and Wolfgang DeMeuter.
Feature Interaction in Composed Systems. In Proceedings Object-Oriented Technology ECOOP
2001 Workshop Reader, volume 2323 of Lecture Notes in Computer Science, pages 86—97. Springer,
June 2001.

viii

[117]

[118]

[119]

[120]

[121]

[122]

[123]

[124]

[125]

[126]

[127]

[128]

[129]
[130]

[131]

[132]

[133]

BIBLIOGRAPHY

Jacek Ratzinger, Michael Fischer, and Harald Gall. EvoLens: Lens-View Visualizations of Evolu-
tion Data. In Proceedings of the 8th International Workshop on Principles of Software Evolution
(IWPSE’05). IEEE CS Press, September 2005.

Jacek Ratzinger, Michael Fischer, and Harald Gall. Improving Evolvability through Refactoring. In
MSR 2005 Workshop Proceedings (MSR’05). ACM Digital Library, May 2005.

Richard M. Stallman and the GCC Developer Community. Using the GNU Compiler Collection
(GCC). Free Software Foundation, 2004.

Claudio Riva. View-based Software Architecture Reconstruction. PhD thesis, Vienna University of
Technology, October 2004.

Claudio Riva and Christian Del Rosso. Experiences with Software Product Family Evolution. In
Proceedings Sixth International Workshop on Principles of Software Evolution (IWPSE’03), pages
161-169. IEEE Computer Society Press, September 2003.

Janice Singer, Robert Elves, and Margaret-Anne Storey. NavTracks: Supporting Navigation in
Software Maintenance. In ICSM ’05: Proceedings of the 21st IEEE International Conference on
Software Maintenance (ICSM’05), pages 325-334, Washington, DC, USA, 2005. IEEE Computer
Society.

Software Composition Group, University of Berne. The FAMIX 2.0 Specification, August 1999.
http://www.iam.unibe.ch/ famoos/ FAMIX/ [30 June 2006].

Software Engineering Group, Department of Informatics, University of Zurich. COSE - Controlling
Software Evolution, 2005. http://www.inf.unisi.ch/projects/cose/ [30 June 2006].

Margaret-Anne D. Storey, K. Wong, F. D. Fracchia, and Hausi A. Miiller. On Integrating Visualiza-
tion Techniques for Effective Software Exploration. In Proceedings of the 1997 IEEE Symposium
on Information Visualization (InfoVis '97), pages 38—45. IEEE Computer Society, 1997.

E. Burton Swanson. The dimensions of maintenance. In Proceedings of the 2nd International Con-
ference on Software Engineering (ICSE), pages 492-497. IEEE Computer Society Press, October
1976.

Nikita Synytskyy, James R. Cordy, and Thomas R. Dean. Robust Multilingual Parsing Using Island
Grammars. In CASCON ’03: Proceedings of the 2003 conference of the Centre for Advanced Studies
on Collaborative research, pages 266-278. IBM Press, 2003.

Ladan Tahvildari, Richard Gregory, and Kostas Kontogianni. An Approach for Measuring Software
Evolution Using Source Code Features. In Proceedings of the Sixth Asia Pacific Software Engineer-
ing Conference, page 10. IEEE Computer Society, 1999.

Alfred Tarski. On the calculus of relations. Journal of Symbolic Logic, 6:73-89, 1941.

Christopher M. B. Taylor and Malcolm Munro. Revision Towers. In Proceedings Ist International
Workshop on Visualizing Software for Understanding and Analysis, pages 43-50. IEEE Computer
Society Press, June 2002.

TechExcel Inc. Issue Tracking and Process Management. http.//www.techexcel.com/products/
devtrack.html [30 June 2006].

Subrina Anjum Tonu, Azin Ashkan, and Ladan Tahvildari. Evaluating Architectural Stability Using
a Metric-Based Approach. In CSMR "06: Proceedings of the Conference on Software Maintenance
and Reengineering, pages 261-270, Washington, DC, USA, 2006. IEEE Computer Society.

Frank van der Linden, editor. Development and Evolution of Software Architectures for Product
Families. Second International ESPRIT ARES Workshop, Las Palmas de Gran Canaria, Spain, vol-
ume 1429 of Lecture Notes in Computer Science. Springer-Verlag Heidelberg, 1998.

BIBLIOGRAPHY ix

[134]

[135]

[136]

[137]

[138]

[139]

[140]

[141]

[142]

[143]

[144]

[145]

[146]

[147]

[148]

Frank van der Linden, editor. Software Architectures for Product Families: International Work-
shop IW-SAPF-3, Las Palmas de Gran Canaria, Spain, volume 1951 of Lecture Notes in Computer
Science. Springer-Verlag Heidelberg, 2000.

Frank van der Linden, editor. Software Product Family Engineering: 4th International Workshop,
PFE 2002, Bilbao, Spain, volume 2290 of Lecture Notes in Computer Science. Springer-Verlag
Heidelberg, 2002.

Frank van der Linden, editor. Software Product-Family Engineering: 5th International Workshop,
PFE 2003, Siena, Italy, volume 3014 of Lecture Notes in Computer Science. Springer-Verlag Hei-
delberg, 2004.

Filip Van Rysselberghe and Serge Demeyer. Reconstruction of Successful Software Evolution Using
Clone Detection. In Proceedings Sixth International Workshop on Principles of Software Evolution
(IWPSE’03), pages 126—130. IEEE Computer Society Press, September 2003.

T. A. Wiggerts. Using Clustering Algorithms in Legacy Systems Remodularization. In WCRE
'97: Proceedings of the Fourth Working Conference on Reverse Engineering (WCRE ’97), page 33,
Washington, DC, USA, 1997. IEEE Computer Society.

Norman Wilde, Juan A. Gomez, Thomas Gust, and Douglas Strasburg. Locating User Functionality
in Old Code. In Proceedings International Conference on Software Maintenance, pages 200-205.
IEEE Computer Society Press, November 1992.

Norman Wilde and Michael C. Scully. Software Reconnaissance: Mapping Program Features to
Code. Journal of Software Maintenance: Research and Practice, 7(1):49-62, January 1995.

Kenny Wong. The Rigi User’s Manual - Version 5.4.4, 1998. http://ftp.rigi.csc.uvic.ca/pub/rigi/
doc/rigi-5.4.4-manual. pdf“refcheckdate.

Jingwei Wu, Claus W. Spitzer, Ahmed E. Hassan, and Richard C. Holt. Evolution Spectrographs: Vi-
sualizing Punctuated Change in Software Evolution. In Proceedings 7th International Workshop on
Principles of Software Evolution (IWPSE’04), pages 57-66. IEEE Computer Society Press, Septem-
ber 2004.

Zhenchang Xing and Eleni Stroulia. Understanding Class Evolution in Object-Oriented Software.
In Proceedings 12th IEEE International Workshop on Program Comprehension, pages 34-43. IEEE
Computer Society, June 2004.

Tetsuo Yamamoto, Makoto Matsushita, Toshihiro Kamiya, and Katsuro Inoue. Measuring Similarity
of Large Software Systems Based on Source Code Correspondence. In Proceedings of the 6th
International Conference on Product Focused Software Process Improvement (PROFES’05), June
2005. to appear.

Stephen S. Yau, J. S. Collofello, and T. MacGregor. Ripple effect analysis of software mainte-
nance. In The IEEE Computer Society’s Second International Computer Software and Applications
Conference, pages 60-65. IEEE Press, November 1978.

Annie T. T. Ying, Gail C. Murphy, Raymond Ng, and Mark C. Chu-Carroll. Predicting Source Code
Changes by Mining Change History. IEEE Transactions on Software Engineering, 30(9):574-586,
2004.

Edward Yourdon and Larry L. Constantine. Structured Design: Fundamentals of a Discipline of
Computer Program and Systems Design. Prentice-Hall, Inc., Upper Saddle River, NJ, USA, 1979.

Thomas Zimmermann, Stephan Diehl, and Andreas Zeller. How History Justifies System Archi-
tecture (or not). In Proceedings Sixth International Workshop on Principles of Software Evolution
(IWPSE’03), pages 73-83. IEEE Computer Society Press, September 2003.

X BIBLIOGRAPHY

[149] Thomas Zimmermann, Peter Weiligerber, Stephan Diehl, and Andreas Zeller. Mining Version His-
tories to Guide Software Changes. In Proceedings 26th International Conference on Software Engi-
neering (ICSE), pages 563-572. ACM Press, May 2004.

